
Leveraging the Training Data Partitioning to

Improve Events Characterization in Intrusion

Detection Systems

Roberto Saia *, Salvatore Carta, Gianni Fenu, and Livio Pompianu

Department of Mathematics and Computer Science, University of Cagliari, Cagliari, Italy;

Email: salvatore@unica.it (S.C.), fenu@unica.it (G.F.), pompianu.livio@unica.it (L.P.)

*Correspondence: roberto.saia@unica.it (R.S.)

Abstract—The ever-increasing use of services based on

computer networks, even in crucial areas unthinkable until a

few years ago, has made the security of these networks a

crucial element for anyone, also in consideration of the

increasingly sophisticated techniques and strategies available

to attackers. In this context, Intrusion Detection Systems

(IDSs) play a primary role since they are responsible for

analyzing and classifying each network activity as legitimate

or illegitimate, allowing us to take the necessary

countermeasures at the appropriate time. However, these

systems are not infallible due to several reasons, the most

important of which are the constant evolution of the attacks

(e.g., zero-day attacks) and the problem that many of the

attacks have behavior similar to those of legitimate activities,

and therefore they are very hard to identify. This work relies

on the hypothesis that the subdivision of the training data

used for the IDS classification model definition into a certain

number of partitions, in terms of events and features, can

improve the characterization of the network events,

improving the system performance. The non-overlapping

data partitions train independent classification models,

classifying the event according to a majority-voting rule. A

series of experiments conducted on a benchmark real-world

dataset support the initial hypothesis, showing a performance

improvement with respect to a canonical training approach.

Keywords—intrusion detection, network security, training

data, algorithm

I. INTRODUCTION

The exponential growth of network-based technologies

has given rise to a stimulating environment that today most

people cannot give up, a scenario that involves countless

important applications such as those related to

communication systems, finance, education, the food

industry, and health, as well as those related to recent

technologies, such as the military and civilian drones. It

should be observed how in recent years the number of

devices connected through networks has increased

dramatically due to the massive spread of devices related

to the Internet of Things (IoT), which authoritative sector

studies estimate will be around sixty billion by 2025 [1].

This enormous network of devices and services expands

the audience of potential targets of the attackers, also by

taking into account that the COVID-19 pandemic further

increases these targets due to the need for many companies

to allow their employees to work from home. In such a

context, one of the most known and most dangerous

attacks is Ransomware [2], directed more and more

frequently against public and private objectives, with

enormous financial and social costs. For this reason, in

these years, in addition to a great commitment of financial

and human resources aimed at defining increasingly

efficient network services, we have witnessed an equally

great commitment as regards the development of

techniques and strategies able to grant the security of these

services.

However, the high degree of heterogeneity [3] that

characterizes this environment makes this operation very

difficult, due to both the continuous efforts of the attackers

to violate the systems with more and more sophisticated

techniques (a case in point is the difficulty of detecting the

zero-day attacks [4]), and the problem that many attacks

are often characterized by a behavior very similar to that

of a legitimate network activity [5], making it difficult to

detect them. To face these problems, researchers are

constantly looking for more and more efficient Intrusion

Detection Systems (IDSs) [6], which are designed using

various techniques such as, just to name a few, those based

on Machine Learning and Deep Learning [7, 8], Artificial

Intelligence [9], Artificial Neural Networks [10–13],

Fuzzy Logic [14], often combining more than one to define

hybrid solutions [15]. Starting from the consideration that

most of the approaches and strategies in the literature

related to the IDS domain exploit the entire training set to

define the classification model [5, 16–18], we have

trivially observed that a training dataset refers to single

events in terms of data rows and to the different features

that characterize each event in terms of data columns.

Consequently, taking advantage of this data

configuration, we have defined a kind of divide-and-

conquer strategy, according to which: (i) the dataset is

divided into a certain number (experimentally defined) of

partitions without overlapping, each of them that refers to

certain events and features; (ii) each partition is used to Manuscript received April 24, 2023; revised May 30, 2023; accepted

July 13, 2023; published December 7, 2023.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1345doi: 10.12720/jait.14.6.1345-1353

train an independent classification model; (iii) the final

event classification is reached using all model

classifications according to a majority-voting rule. In other

words, this works proposes a Training Data Partitioning

approach aimed to improve the characterization of the

network events, then the IDS performance, experimentally

verifying what we previously hypothesized and

formalized [19], providing the following main

contributions:

• Definition of the Training Data Partitioning (TDP)

approach aimed to partition a training dataset

according to an optimal number of events (data

rows) and features (data columns);

• Formalization of the rules needed to partition a

training dataset regardless of its number of rows

and columns, and to perform the classification

process also when it is not possible to apply the

majority-voting rule, i.e., when an event receives

the same number of votes in the normal and

intrusion classes;

• Definition of an intrusion detection algorithm that

exploits the proposed TDP approach, analyzing

and classifying each network event as normal or

intrusion;

• Adoption of an experimental criterion aimed to

face overfitting problems, which ensures an

effective separation between the data used to select

the most performing baseline classifier and the

optimal number of dataset partitions, and the data

used during the validation process, combining this

criterion with a canonical k-fold cross-validation

one.

Although other works in the literature have already

considered partitioning the training data, for instance, to

parallelize the training process of a classification or

regression model (e.g., distributing the process across

many computing nodes [20]), or to face the limits of the

hardware resources (e.g., in terms of memory in case of

big datasets [21]), to the best of our knowledge, there are

no significant works where this operation was aimed at a

better characterization of the dataset samples to improve

the classification performance.

The remainder of this paper is structured in the

following way: Section II discusses the background and

the related works concerning the intrusion detection

research domain; Section III introduces the formal

notation we used along with the formalization of the

problem to face; Section IV explains the proposed

approach and its implementation; Section V describes the

development environment, the adopted real-world dataset,

the experimental methodology, and the process of

selection of the state-of-the-art baseline classifier,

reporting and discussing the experimental results;

Section VI concludes this work with some remarks,

making mention of future research directions.

II. BACKGROUND AND RELATED WORK

The concept of intrusion understood as an attempt to

gain access to the resource of a network illegally was

coined many years ago in conjunction with the spread of

network services, public and private [22]. Since then,

literature has dealt with the aspects related to this potential

threat, from the theoretical ones [23] to the practical ones

concerning the contexts that have gradually emerged over

the years, such as those related to the Internet of Things

(IoT), Cloud Computing, Smart Cities, or health-care

environments.

The IDSs analyze network traffic to identify illegal

access attempts to the network or the improper use of the

involved resources, as some attacks do not have the main

objective of illegitimately exploiting resources but, for

instance, putting them out of service, as it happens with the

Denial of Service (DoS) or Distributed Denial of Service

(DDoS) attacks often reported by the media [24].

It can base its operation on different modalities, the

most common of them are: (i) anomaly-based, according

to which it classifies the network activities based on a

rules/heuristic-based strategy, then by analyzing their

behavior instead querying a database of known

patterns [25]; (ii) signature-based, where the new network

activity pattern is compared to the known patterns stored

in a database, and it is classified based on the basis of this

comparison process [26]; (iii) specification-based,

according to which the system inspects the involved

protocols to detect anomalous sequences that may refer to

an attack in progress [27]; (iv) hybrid-based, which does

not represent a pure modality but a combination of the

previous ones [28].

Discussing the pros and cons of the above methods: an

anomaly-based IDS can face attacks such as the zero-days

ones and, more generally, attacks characterized by an

anomalous behavior but it presents a limitation given by

its long response-time, which represent a crucial problem

in a highly dynamic environment such as the one in which

it operates; a signature-based IDS well operates in the

context of known attacks and variations of them but its

main limitation is given by the inability to inspect the

involved protocols and the high computational load

required by the classification process; a specification-

based IDS can inspect the protocols related to the network

activities to detect anomalous behaviors but it is not able

to differentiate the legitimate and illegitimate activities

that have the same behavior and, in addition, the protocol

inspection/tracing capability generates a high

computational load; a hybrid-based IDS is obviously

characterized by the same pros and cons of the methods

that it adopts.

As regards the method of detecting network activities in

terms of the number and location of the IDSs, the literature

indicates four main categories: (i) Host-based Intrusion

Detection Systems (HIDSs) [29], which exploits several

hosts to detect the network activity; (ii) Network-based

Intrusion Detection Systems (NIDSs) [30], which adopts

only a host to detect the network activity; (iii) Network-

Node-based Intrusion Detection Systems (NNIDSs) [31],

which exploit a single host strategically placed in the

network; (iv) Distributed-based Intrusion Detection

Systems (DIDSs) [32], which combines the

aforementioned categories to detect the network activity.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1346

A further subdivision of the IDSs based on the type of

response to the attacks groups them into two broad

categories, active and passive [33]: active, when in

response to an attack, in addition to recording the activity

(log) and forwarding the alerts, the IDS reconfigures the

network to counteract the activities of the attackers;

passive, when in response to an attack the IDS only records

the related network activity, forwarding the needed alerts,

without putting in place any active countermeasure.

The discussed classifications of the IDSs based on their

operational mode are summarized in Fig. 1.

Figure 1. Intrusion detection systems modes.

Similar to other research domains (e.g., Fraud

Detection [34]), where the main objective is the

identification of numerically rare events, the performance

evaluation metrics used in this domain must take into

account the high degree of data imbalance that usually

characterizes the data, as to get reliable evaluations not

biased by the majority class of samples.

In the Intrusion Detection domain, the minority class is

the intrusion one and the IDSs usually operate according

to a binary criterion [35], classifying each network event

as normal or intrusion. It means that the metrics to be

considered are those suitable for the evaluation of binary

classifiers such as, for example, those based on the

confusion matrix, i.e., a matrix 22 that reports the number

of True Negatives (TN), False Negatives (FN), True

Positives (TP), and False Positives (FP), as shown in

Fig. 2.

Some examples of confusion-matrix-based metrics

widely used in this research field are the Accuracy, the

True Positive Rate, and the True Negative Rate but to deal

with the imbalance problem such metrics are often flanked

by other ones [36] that are not influenced by this data

characteristic, such as those based on the Receiver

Operating Characteristic (ROC) curve, as the Area Under

the Receiver Operating Characteristic Curve (AUC).

Figure 2. Confusion matrix.

III. NOTATION AND PROBLEM DEFINITION

Specifying that we used the notation |𝐸| to indicate the

cardinality of the set 𝐸, we denote as 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑁} a

set of network events composed of a subset 𝐸+ =
{𝑒1

+, 𝑒2
+, … , 𝑒𝑋

+} of normal events (𝐸+ ⊆ 𝐸), a subset 𝐸− =
{𝑒1

−, 𝑒2
−, … , 𝑒𝑌

−} of intrusion events (𝐸− ⊆ 𝐸), and a subset

of 𝐸̂ = {𝑒1̂, 𝑒2̂, … , 𝑒𝑀̂} unclassified events (𝐸̂ ⊆ 𝐸).

According to the above notation, we have 𝐸 =

(𝐸+  ∪   𝐸−  ∪   𝐸̂) , where each event 𝑒 ∈ 𝐸 is

characterized by a series of features 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑊},

and it can only belong to one of the two classes in 𝐶 =
 {𝑛𝑜𝑟𝑚𝑎𝑙, 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛}.

In addition, we denote as 𝑇 = {𝑒1, 𝑒2, … , 𝑒𝐾} (given by

𝐸+ ∪ 𝐸−) the training set, which can be partitioned into

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑍} partitions, according to the operation

as 𝑃(𝐸𝑅,𝐹𝐶), with 𝐸𝑅 the number of Event Rows, and 𝐹𝐶

the number of Feature Columns, then |𝑃| = 𝑍 = (𝐸𝑅 ×
𝐹𝐶).

Given the set 𝐸, this means that: each partition can be

composed of
𝑁

𝐸𝑅
 events and

𝑊

𝐹𝐶
 features, since |𝐸| = 𝑁 and

|𝐹| = 𝑊; the bounds of 𝐸𝑅 is 1 ≤ 𝐸𝑅 ≤ |𝑇| and that of

𝐹𝐶 is 1 ≤ 𝐹𝐶 ≤ |𝐹|, then the pair of values 𝐸𝑅 = 𝐹𝐶 = 1

indicates the canonical data configuration without

partitioning.

It should be noted that each partition defined according

to the ER value must contain samples that belong to both

classes in C, to allow us the training of the evaluation

model. Since we consider the intrusion detection problem

in binary terms, according to the provided notation we can

formalize it as shown in Eq. (1), denoting the intrusion

detection approach as Ξ, and the evaluation function (it

returns 1 if the classification is correct, 0 otherwise) of an

event 𝑒̂ as 𝑒𝑣𝑎𝑙(𝑒̂, Ξ), so our problem can be expressed in

terms of maximization of the 𝜂 value (|𝐸̂| represents the η

upper bound).

 max
0≤𝜂≤|Ê|

𝜂 = ∑ 𝑒𝑣𝑎𝑙(𝑒̂𝑚, Ξ)|𝐸̂|
𝑚=1 (1)

This means that the maximum value returned by Eq. (1)

can only be achieved by an ideal intrusion detection

approach able to correctly classify all the events, i.e., the

goal to aim for.

IV. PROPOSED APPROACH

The problem previously defined in Eq. (1) needs to be

transposed into the proposed TDP approach, then revised

by subdividing the classification process according to the

number of training set partitions.

It means that the evaluation process is now composed of

𝑍 sub-processes (i.e., |𝑃| = 𝑍), then the Ξ intrusion

detection approach is executed 𝑍 times, and the final

classification of the event depends on the result of each

execution: for example, assuming we have the values 𝐾 =
4 , 𝑊 = 4 , 𝐸𝑅 = 2 , 𝐹𝐶 = 2 , which means that we

subdivide the training set T into |𝑃| = 𝑍 = (2 × 2) = 4

partitions, each of them composed of
𝐾

𝐸𝑅
=

4

2
= 2 events

and
𝑊

𝐹𝐶
=

4

2
= 2 features. In this way, the process of

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1347

training of each evaluation model m uses, respectively, the

events and features in each p1, p2, p3, p4 partitions of

Eq. (2), generating four m1, m2, m3, and m4 evaluation

models.

 𝑃(2,2) =
𝑝1 𝑝2

𝑝3 𝑝4
⇒

𝑓1,1 𝑓2,1

𝑓1,2 𝑓2,2

𝑓3,1 𝑓4,1

𝑓3,2 𝑓4,2

𝑓1,3 𝑓2,3

𝑓1,4 𝑓2,4

𝑓3,3 𝑓4,3

𝑓3,4 𝑓4,4

⇒
𝑚1 𝑚2

𝑚3 𝑚4
 (2)

A. Data Partitioning Criteria

Given that the number of partitions determined by the

𝐹𝐶 and ER values may not exactly partition the features

(data columns) and events (data rows), i.e., when
(|𝐹| 𝑚𝑜𝑑 𝐹𝐶) ≠ 0 or (|𝑇| 𝑚𝑜𝑑 𝐸𝑅) ≠ 0 , we need to

define a criterion able to overcome this problem.

Starting from the notation provided in Section III, we

denote 𝜇1 = (|𝐹| 𝑚𝑜𝑑 𝐹𝐶) and 𝜇2 = (|𝑇| 𝑚𝑜𝑑 𝐸𝑅) ,

formalizing the needed criterion, respectively for the set F

and T, as shown in Eq. (3). Intending to not bias the

original information, such a criterion adopts two different

strategies: concerning the set F , it duplicates the last

feature column μ1 times, whereas concerning the set 𝐹, it

duplicates the last μ2 event rows, as to avoid adding events

that belong to the same class in C.

𝐹 ⇒ 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑊, 𝑓𝑊+1, 𝑓𝑊+2, … , 𝑓𝑊+μ1
}

with 𝑓𝑊+1 = 𝑓𝑊+2 = ⋯ = 𝑓𝑊+μ1
= 𝑓𝑊

 (3)

𝑇 ⇒ 𝑇 = {𝑒1, 𝑒2, … , 𝑒𝐾 , 𝑒𝐾+1, 𝑒𝐾+2, … , 𝑒𝐾+μ2
}

with 𝑒𝐾+1 = 𝑒𝐾 , 𝑒𝐾+2 = 𝑒𝐾−1, … = 𝑒𝐾+𝜇2
= 𝑒𝐾−𝜇2

Another criterion is instead aimed to solve the problems

that happen when it is not possible to apply the majority-

voting rule since the two possible destination classes (i.e.,

normal and intrusion) receive the same number of votes.

It introduces a discriminating classification obtained by

defining a further evaluation model trained on the entire E

set (canonical approach), generating in this way

𝑐1, 𝑐2, … , 𝑐𝑍, 𝑐𝑍+1 classifications.

By way of example, assuming a scenario with ER =
FC = 2, which generates the 𝑚1, 𝑚2, 𝑚3, 𝑚4 classification

models that lead toward the 𝑐1, 𝑐2, 𝑐3, 𝑐4 classifications for

an event, where we assume that two of them are normal

and the other two are an intrusion, the final classification

is reached by adding the classification 𝑐5 obtained through

a further evaluation model trained on the entire set T.

The formalization of all possible classification cases is

shown in Eq. (4), where 𝑐1 and 𝑐2 indicate, respectively,

normal and intrusion elements in set C.
We experimented that such two criteria do not

significantly alter the involved processes, also because

they are applied to both the training and test set, and for

simplification reasons, from now on, we will consider their

application as an internal preprocessing step applied

during the data partition process.

𝑐1, 𝑖𝑓 ∑ ω(𝑐𝑖 , 𝑐1)

𝑍

𝑖=1

> ∑ ω(𝑐𝑖 , 𝑐2)

𝑍

𝑖=1

𝑐2, 𝑖𝑓 ∑ ω(𝑐𝑖 , 𝑐1)

𝑍

𝑖=1

< ∑ ω(𝑐𝑖 , 𝑐2)

𝑍

𝑖=1

𝑐1, 𝑖𝑓 ∑ ω(𝑐𝑖 , 𝑐1)

𝑍

𝑖=1

= ∑ ω(𝑐𝑖 , 𝑐2)

𝑍

𝑖=1

∧ 𝑐𝑍+1 = 𝑐1

𝑐2, 𝑖𝑓 ∑ ω(𝑐𝑖 , 𝑐1)

𝑍

𝑖=1

= ∑ ω(𝑐𝑖 , 𝑐2)

𝑍

𝑖=1

∧ 𝑐𝑍+1 = 𝑐2

with

 𝜔(𝑎, 𝑏) = {
0, 𝑖𝑓 𝑎 ≠ 𝑏
1, 𝑖𝑓 𝑎 = 𝑏

 (4)

B. Data Classification Algorithm

The criteria previously formalized allow us to apply the

proposed TDP approach to any dataset, according to

Algorithm 1, which performs the classification of the new

network events. It takes as input a baseline classification

algorithm 𝛽, the set of classified events T (i.e., the training

set), the set 𝐸̂ of unclassified events, the 𝐸𝑅 and 𝐹𝐶

values that determine the data partitioning, returning as

output the classification of all the events in the set 𝐸̂.

It should be noted that Algorithm 1 is formalized in

terms of pseudocode using functions that explicitly refer to

canonical (e.g., trainModel and

getMajorityVotingClassifications) and related to our

approach (e.g., getPartitions and getEventClass), which

have been previously formalized.

Algorithm 1. TDP classification

Require: β=Baseline classification algorithm,

T=Training set, Ê=Events to evaluate, ER=Event rows,

FC=Feature columns

Ensure: Ē=Classification of all the events in the set Ê

1. procedure getTDP(β, T, Ê, ER, FC)

2. if(ER x FC) is even) then

3. m’’ ← trainModel(β, T)

4. end if

5. p ← getPartitions(T, ER, FC)

6. for all p in P do

7. m ← trainModel(β, p)

8. M.add(m)

9. end for

10. for all ê in Ê do

11. P’’← getPartitions(ê, ER, FC)

12. for all m in M do

13. c ← getEventClass(m’’, ê)

14. C.add(c)

15. end for

16. if(ER x FC) is even then

17. c’’ ← getEventClass(m’’, ê)

18. C.add(c’’)

19. end if

20. Ē.add(getMajorityVotingClassification(ê, C)

21. end for

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1348

In more detail: at steps from 2 to 4 an evaluation model

is trained by using the entire set E, if the numbers of

partitions (i.e., Z = |ER  FC|) is even; at step 5 the training

test T is processed in order to define the partitions,

according to the ER and FC values; for each partition, at

steps from 6 to 9, an evaluation model of the algorithm 𝛽

is trained; the classification of the events in 𝐸̂ is performed

from step 10 to 21, where at step 11 the features of the

unevaluated event 𝑒̂ are divided into partitions, according

to the ER and FC values, at steps from 12 to 15 each

evaluation models in M provide an event classification,

and an additional canonical classification based on the

model trained at step 3 is added to the set C when if the

number of involved partitions is even (steps from 16 to 19);

at step 20 the event 𝑒̂ is classified according the majority-

voting rule, and the classification is added to the set 𝜅,

which is returned by the algorithm at step 22, with the

classification of all the events in the input set (i.e., 𝐸̂).

Computational Complexity. The TDP approach does

not present an excessive computational complexity [37],

also considered that the involved tasks can be distributed

over several processes and/or machines, for example using

frameworks such as MapReduce [38].

C. Approach Architecture

All the elements previously described that compose the

proposed TDP approach are summarized in the high-level

description of Fig. 3, according to the Algorithm 1

processes. It starts from a preprocessing step, where the

training set T and the unclassified events set 𝐸̂ are

managed through the criteria formalized in Section IV-A.

Subsequently, the data partitioning is carried out based

on the ER and FC values, and the related classification

models are trained and used in the last step, where all the

classifications decide the event classification using the

majority-voting rule.

Figure 3. TDP high-level architecture.

V. EXPERIMENTS

We carried out all the experiments using an 11th

Generation Intel Core i7-1165G7, 2.80GHz  8 CPUs

machine, with 16 GB of RAM, Linux operating system

with kernel 5.10.0-14-amd64, and the Python language

with the Scikit-learn (http://scikit-learn.org) library. In

addition, to ensure the reproduction of the experiments, we

fixed the pseudo-random number generator seed of the

Scikit-learn to 1.

A. Dataset

The real-world dataset used for the validation process,

the NSL-KDD (https://www.unb.ca/cic/datasets/nsl.html),

can be considered a benchmark dataset in the intrusion

detection field [39]. Considering that many works in the

literature adopted it, the use of this dataset allows anyone

to compare them.

The network events in the dataset are related to the UDP,

TCP, and ICMP protocol activity, including many types of

attacks. The NSL-KDD dataset release contains 148,517

events (77,054 normal events and 71,463 intrusion events).

Each event contains 43 features (4 categorical, 6 binary, 23

discrete, and 10 continuous), involving four different

classes of network attacks (120 Privilege Escalation,

53,387 Denial of Service, 14,077 Remote Scanning, and

3,879 Remote Access). Tables I and II report the main

characteristics of the dataset.

TABLE I. NSL-KDD DATASET OVERVIEW

Total Events

|E+| + |E−|

Normal

|E+|

Intrusion

|E−|

Features

|F|

Classes

|C|

148,517 77,054 71,463 43 2

TABLE II. NSL-KDD NETWORK ATTACKS CLASSES

Class Attacks Type Description

1 120
Privilege

Escalation

Aimed to obtain a privileged

access as unprivileged user (e.g.,

Buffer overflow, Rootkit, Perl,

Loadmodule, Xterm, Sqlattack,

and Ps).

2 53,387
Denial of

Service

Aimed to block a service/system

generating an huge number of

normal network activities (e.g.,

Mail-bomb, Land, Back, Pod,

Smurf, Neptune, Teardrop,

Udpstorm, Processtable, Worm,

and Apache2).

3 14,077
Remote

Scanning

Aimed to get details about a

service/system through a series

of invasive and non-invasive

approaches (e.g., Nmap,

IPsweep, Satan, Portsweep,

Saint, and Mscan).

4 3,879
Remote

Access

Aimed to obtain a remote system

access by exploiting different

techniques (e.g., Ftp write,

Guess password, Imap, Phf,

Warez-master, Multihop,

Xsnoop, Xlock, Snmpguess,

Httptunnel, Snmpgetattack,

Named, and Sendmail).

B. Methodology

As preprocessing steps: (i) we transformed the dataset’s

categorical features into a numerical one; (ii) we

introduced a class feature that classifies each event

according to a binary criterion, using the value 0 for the

normal events, and the value 1 for the intrusion ones,

removing the original attack-type label for each event.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1349

We carried out all the experiments according to a

preliminary division of the dataset into two parts:

1. An in-sample part (80%), used to detect the most

performing classification baseline algorithm in the

context of the canonical and TDP approaches, and

to detect the optimal number of TDP partitions (i.e.,

ER and FC values);

2. An out-of-sample part (20%), used to perform the

validation process, where we compare the perfor-

mance of the TDP approach to that of the canonical

one.

Such a methodology avoids overfitting since it provides

an effective separation between the data related to the

different data processes, where we also apply a canonical

k-fold cross-validation criterion with k = 5.

For performance assessment, we use three metrics

widely used in this domain: the True Negative Rate (TNR),

the True Positive Rate (TPR), and the Area Under the

Receiver Operating Characteristic Curve (AUC).

C. Baseline Algorithms

We selected the most performing state-of-the-art

classification algorithm by testing the intrusion detection

performance of several algorithms widely used for this

task in the literature, using only the in-sample part of the

dataset.

TABLE III. BASELINE ALGORITHMS PARAMETERS

Algorithm Parameters

Adaptive

Boosting

algorithm=’SAMME.R’, base_estimator=None,

learning_rate=1.0, n_estimators=50, random_state=1

Decision

Tree

class_weight=None, criterion=’gini’, max_depth=None,

max_features=None, max_leaf_nodes=None,

min_impurity_decrease=0.0, min_impurity_split=None,

min_samples_leaf=1, min_samples_split=2,

min_weight_fraction_leaf=0.0, presort=False,

random_state=1, splitter=’best’

Gradient

Boosting

criterion=’friedman_mse’,

init=None,

learning_rate=0.1,

loss=’deviance’,

max_depth=3,

max_features=None, max_leaf_nodes=None,

min_impurity_decrease=0.0, min_impurity_split=None,

min_samples_leaf=1, min_samples_split=2,

min_weight_fraction_leaf=0.0, n_estimators=100, pre-

sort=’auto’, random_state=1, subsample=1.0,

verbose=0, warm_start=False

Multilayer

Perceptron

activation=’relu’, alpha=0.0001, batch_size=’auto’,

beta_1=0.9, beta_2=0.999, early_stopping=False,

epsilon=1e-08,

hidden_layer_sizes=(100,),

learning_rate=’constant’,

learning_rate_init=0.001,

max_iter=200, momentum=0.9,

nesterovs_momentum=True, power_t=0.5,

random_state=1, shuf-

fle=True, solver=’adam’, tol=0.0001,

validation_fraction=0.1, verbose=False,

warm_start=False

Random

Forests

bootstrap=True, class_weight=None, criterion=’gini’,

max_depth=None, max_features=’auto’,

max_leaf_nodes=None, min_impurity_decrease=0.0,

min_impurity_split=None, min_samples_leaf=1,

min_samples_split=2, min_weight_fraction_leaf=0.0,

n_estimators=10, n_jobs=1, oob_score=False,

random_state=1, verbose=0, warm_start=False

The algorithms we take into consideration are Adaptive

Boosting [40], Decision Tree [41], Gradient Boosting [42],

Multilayer Perceptron [43], and Random Forests [44]. The

algorithms parameters are reported in Table III, whereas

the measured performance is shown in Table IV, where the

results indicate Random Forests as the most performing

algorithm (the best performance is highlighted in bold).

TABLE IV. IN-SAMPLE ALGORITHMS PERFORMANCE

Algorithm TNR TPR AUC

Adaptive Boosting 0.9518 0.9565 0.9539

Decision Tree 0.9747 0.9738 0.9737

Gradient Boosting 0.9747 0.9738 0.9737

Multilayer Perceptron 0.9141 0.9003 0.9031

Random Forests 0.9849 0.9900 0.9877

D. Optimal Data Partitioning

The experiments performed in this step are aimed to

detect the optimal number of data partitions for the

proposed TDP approach, then the ER and FC values. The

process took place using the Random Forests algorithm

previously selected and the in-sample part of the dataset,

where during the experiments we applied the k-fold cross-

validation criterion based on five folds (i.e., k = 5).

The optimal parameters were selected by considering all

the metrics discussed in Section V-B (i.e., TNR, TPR, and

AUC).

The results indicate ER = 1 and FC = 2 as optimal values

in the context of the RF algorithm we selected in

Section V-C. This is visible in Table V, where to simplify,

we report only the most significant range of values (the

best performance is highlighted in bold).

TABLE V. IN-SAMPLE DATA PARTITIONING VALUES TUNING

ER FC TNR TPR AUC

1 1 0.9849 0.9900 0.9877

1 2 0.9993 0.9998 0.9995

1 3 0.9992 0.9961 0.9978

2 1 0.9984 0.9961 0.9989

2 2 0.9987 0.9997 0.9991

2 3 0.9938 0.9968 0.9950

3 1 0.9983 0.9991 0.9987

3 2 0.9984 0.9995 0.9989

3 3 0.9947 0.9962 0.9953

It should be noted that the pair of values ER = 1 and FC

= 1 represents the canonical data configuration without

data partitioning.

E. Results

After identifying the most performing baseline

algorithm (Section V-C) and the optimal parameters for

partitioning data under the proposed approach (Section V-

D), performing both the processes in the in-sample part of

the dataset, the next step is to compare our TDP approach

with the canonical one. We perform this operation in the

out-of-sample part of the dataset, as to obtain reliable

results not influenced by overfitting.

In addition, we made all the experiments according to

the k-fold cross-validation criterion with k = 5. The results

are reported in Table VI, where the best performance is

highlighted in bold.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1350

TABLE VI. OUT-OF-SAMPLE PERFORMANCE

Approach Algorithm TNR TPR AUC

Canonical Random Forests 0.9868 0.9870 0.9867

TDP Random Forests 0.9913 0.9933 0.9924

F. Discussion

Based on the performed experiments and the related

results we can make the following considerations:

• The process aimed at defining the data partitioning

values (i.e., ER and FC), carried out using the in-

sample part of the dataset, has identified ER = 1

and FC = 2 as optimal data partitioning values,

indicating that no partitioning will be made in

terms of events;

• The performance comparison between the

canonical approach (i.e., based on a classification

model trained on the entire training set) and the

proposed TDP one, which we made using the out-

of-sample part of the dataset, shows that TDP

outperforms the canonical approach;

• In more detail, the results of the performance

comparison reported in Table VI indicate that TDP

outperforms the canonical approach in terms of all

the considered evaluation metrics (i.e., TNR, TPR,

and AUC), supporting the hypothesis behind this

work;

• Despite the improvements in performance may

appear modest, the results are promising since in

the intrusion detection domain there are many

scenarios [45, 46] where the IDSs operate

continuously (24 hours a day and 365 days a year),

then also minor improvements lead to the detection

of a significant number of intrusion events, with all

the consequent advantages;

• Just by way of example, even considering a limited

number of events such as those present in the used

NSL-KDD dataset, the performance gain we have

achieved in terms of TPR and TNR (respectively,

+0.0063 and +0.0045) made it possible to correctly

identify a further 485 legitimate activities (normal

events) and 321 attacks (intrusion events);

• An additional performance analysis, aimed at

verifying that the increase in performance in terms

of TPR and TNR did not depend on the increasing

of false positives and/or false negatives cases

(although the measured improvement in terms of

AUC can rule this out), showed that the proposed

approach also gets an improvement in this sense,

with a False Positive Rate value that going down

from 0.0132 to 0.0087, and a False Negative Rate

value that going down from 0.0130 to 0.0067;

• The experimental results demonstrate that the

training data partitioning on which the proposed

approach relies can improve the performance of an

IDS, and this is also further supported by the

adoption of a double validation criterion (in-

sample}/out-of-sample and k-fold cross-validation)

during the experiments, which provides us reliable

results not influenced by overfitting;

• In other words, the performed experiments have

shown the effectiveness of such an approach,

where non-overlapping data partitions train

independent classification models combined

according to a majority-voting rule, and in this

regard, it is necessary to consider that we operate

in a challenging domain characterized by a high

level of data heterogeneity, a similarity between

some legitimate and illegitimate classes of events,

as well as a limited room for improvement given

by the good performance achieved by the state-of-

the-art approaches;

• In conclusion, since the proposed approach can

improve the performance of a baseline algorithm,

it can be adopted in many state-of-the-art

approaches that exploit this algorithm to improve

their performance.

VI. CONCLUSION AND FUTURE WORK

Given the increasing dependence of people on public

and private network services, the security of such networks

has long become a crucial requirement, albeit very difficult

to ensure due to the high dynamism of the involved factors.

In this scenario, the IDSs play a primary role since they

analyze and classify network events to identify any

unauthorized use. These systems must face the continuous

evolution of the techniques used by the attackers, with the

complication that many attacks have a behavior very

similar to that of normal network activities.

To improve the characterization of the network events

to mitigate this kind of problem, this work proposed a TDP

approach that relies on the partitioning of training data in

terms of time (event rows) and characteristics (feature

columns). The event classification is made using multiple

classification models trained individually on each of these

partitions, whose results define the event classification

according to a majority-voting rule.

The validation process, the results of which are to be

considered reliable thanks to the adoption of a double

criterion (in-sample/out-of-sample and k-fold cross-

validation) aimed at avoiding overfitting problems, proved

the validity of the proposed TDP approach, showing

improvements in terms of TNR, TPR, and AUC, compared

to the canonical approach.

In future work, we plan to experiment with the proposed

approach in the context of different domains/datasets, as to

explore the relations between the optimal number of

partitions and the involved data type and domain. This is

because, although the double validation criterion we have

adopted (in-sample/out-of-sample e k-fold cross-validation)

guarantees us that the results obtained do not depend on

randomness (k-fold cross-validation) or overfitting

problems (in-sample/out-of-sample), investigating the

relationships between the optimal number of partitions and

the context of the data provides elements for further

improvements of the approach.

CONFLICT OF INTEREST

The authors state that there are no conflicts of interest in

the publication of this research.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1351

AUTHOR CONTRIBUTIONS

Conceptualization, R.S., L.P., S.C., and G.F.; data

curation, R.S. and L.P.; formal analysis, R.S.;

methodology, R.S., L.P., S.C., and G.F.; resources, R.S.,

L.P., S.C., and G.F.; supervision, S.C. and G.F.; validation,

R.S., L.P., and S.C.; writing, original draft, R.S.; writing,

review and editing, R.S., L.P., and S.C.; all authors had

approved the final version.

FUNDING

This research was partially funded and supported by

Visioscientiae Srl.

REFERENCES

[1] A. N. Mian, S. W. H. Shah, S. Manzoor, A. Said, K. Heimerl, and

J. Crowcroft, “A value-added IoT service for cellular networks

using federated learning,” Computer Networks, vol. 213, 109094,

2022.

[2] A. Tandon and A. Nayyar, “A comprehensive survey on

ransomware attack: A growing havoc cyberthreat,” Data

Management, Analytics and Innovation. Advances in Intelligent

Systems and Computing, vol. 839, pp. 403–420, 2019.

[3] M. A. Khan and J. Kim, “Toward developing efficient Conv-AE-

based intrusion detection system using heterogeneous dataset,”

Electronics, vol. 9, no. 11, 1771, 2020.

[4] K. Radhakrishnan, R. R. Menon, and H. V. Nath, “A survey of zero-

day malware attacks and its detection methodology,” in Proc.

TENCON 2019, 2019 IEEE Region 10 Conference (TENCON),

IEEE, 2019, pp. 533–539.

[5] S. Carta, A. S. Podda, D. R. R. Recupero, and R. Saia, “A local

feature engineering strategy to improve network anomaly detection,”

Future Internet, vol. 12, no. 10, 177, 2020.

[6] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey

of intrusion detection systems: Techniques, datasets and challenges,”

Cybersecurity, vol. 2, no. 1, pp. 1–22, 2019.

[7] H. Liu and B. Lang, “Machine learning and deep learning methods

for intrusion detection systems: A survey,” Applied Sciences, vol. 9,

no. 20, 4396, 2019.

[8] M. B. Pranto, M. H. A. Ratul, M. M. Rahman, I. J. Diya, and Z.-B.

Zahir, “Performance of machine learning techniques in anomaly

detection with basic feature selection strategy—A network

intrusion detection system,” Journal of Advances in Information

Technology, vol. 13, no. 1, pp. 36–44, February 2022.

[9] V. Kanimozhi and T. P. Jacob, “Artificial intelligence based

network intrusion detection with hyper-parameter optimization

tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud

computing,” in Proc. 2019 International Conference on

Communication and Signal Processing (ICCSP), IEEE, 2019, pp.

33–36.

[10] T.-T.-H. Le, Y. Kim, H. Kim et al., “Network intrusion detection

based on novel feature selection model and various recurrent neural

networks,” Applied Sciences, vol. 9, no. 7, 1392, 2019.

[11] M. A. Rassam and M. A. Maarof, “Artificial immune network

clustering approach for anomaly intrusion detection,” Journal of

Advances in Information Technology, vol. 3, no. 3, pp. 147–154,

2012.

[12] O. Al-Jarrah and A. Arafat, “Network intrusion detection system

using neural network classification of attack behavior,” Journal of

Advances in Information Technology, vol. 6, no. 1, pp. 1–8, 2015.

[13] S. P. Sithungu and E. M. Ehlers, “GAAINet. A generative

adversarial artificial immune network model for intrusion detection

in industrial IoT systems,” Journal of Advances in Information

Technology, vol. 13, no. 5, pp. 456–461, 2022.

[14] B. Kavitha, S. Karthikeyan, and P. S. Maybell, “Emerging

intuitionistic fuzzy classifiers for intrusion detection system,”

Journal of Advances in Information Technology, vol. 2, no. 2, pp.

99–108, 2011.

[15] M. L. B. Meyer and Y. Labit, “Combining machine learning and

behavior analysis techniques for network security,” in Proc. 2020

International Conference on Information Networking (ICOIN),

IEEE, 2020, pp. 580–583.

[16] R. Saia, S. Carta, and D. R. Recupero, “A probabilistic-driven

ensemble approach to perform event classification in intrusion

detection system,” in Proc. the 10th International Joint Conference

on Knowledge Discovery, Knowledge Engineering and Knowledge

Management (IC3K 2018), 2018, pp. 139–146.

[17] R. Saia, S. Carta, D. R. Recupero, and G. Fenu, “A feature space

transformation to intrusion detection systems,” in Proc. the 12th

International Joint Conference on Knowledge Discovery,

Knowledge Engineering and Knowledge Management (IC3K 2020),

2020, pp. 137–144.

[18] R. Saia, S. Carta, D. R. Recupero, G. Fenu, and Ma. Stanciu, “A

Discretized Extended Feature Space (DEFS) model to improve the

anomaly detection performance in network intrusion detection

systems,” in Proc. the 11th International Joint Conference on

Knowledge Discovery, Knowledge Engineering and Knowledge

Management (IC3K 2019), 2019, pp. 322–329.

[19] R. Saia, A. S. Podda, G. Fenu, and R. Balia, “Decomposing training

data to improve network intrusion detection performance,” in Proc.

the 13th International Joint Conference on Knowledge Discovery,

Knowledge Engineering and Knowledge Management (IC3K 2021),

2021, pp. 241–248.

[20] S. Khalifa, P. Martin, and R. Young, “Label-aware distributed

ensemble learning: A simplified distributed classifier training

model for big data,” Big Data Research, vol. 15, pp. 1–11, 2019.

[21] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin, “Large linear

classification when data cannot fit in memory,” ACM Transactions

on Knowledge Discovery from Data (TKDD), vol. 5, no. 4, pp. 1–

23, 2012.

[22] J. P. Anderson. (1980). Computer security threat monitoring and

surveillance. [Online]. Available:

https://seclab.cs.ucdavis.edu/projects/history/papers/ande80.pdf

[23] S. Axelsson. (2000). Intrusion detection systems: A survey and

taxonomy. Technical Report. [Online]. Available:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi

=7a15948bdcb530e2c1deedd8d22dd9b54788a634

[24] J. F. Balarezo, S. Wang, K. G. Chavez, A. Al-Hourani, and S.

Kandeepan, “A survey on DoS/DDoS attacks mathematical

modelling for traditional, SDN and virtual networks,” Engineering

Science and Technology, an International Journal, vol. 31, 101065,

2021.

[25] Z. K. Maseer, R. Yusof, N. Bahaman, S. A. Mostafa, and C. F. M.

Foozy, “Benchmarking of machine learning for anomaly based

intrusion detection systems in the CICIDS2017 dataset,” IEEE

Access, vol. 9, pp. 22351–22370, 2021.

[26] M. Masdari and H. Khezri, “A survey and taxonomy of the fuzzy

signature-based intrusion detection systems,” Applied Soft

Computing, vol. 92, 106301, 2020.

[27] L. O. Nweke, “A survey of specification-based intrusion detection

techniques for cyber-physical systems,” International Journal of

Advanced Computer Science and Applications, vol. 12, no. 5, 2021.

[28] A. N. Cahyo, A. K. Sari, and M. Riasetiawan, “Comparison of

hybrid intrusion detection system,” in Proc. 2020 12th

International Conference on Information Technology and

Electrical Engineering (ICITEE), IEEE, 2020, pp. 92–97.

[29] S. Jose, D. Malathi, B. Reddy, and D. Jayaseeli, “A survey on

anomaly based host intrusion detection system,” Journal of Physics:

Conference Series, vol. 1000, 012049, 2018.

[30] M. Mazini, B. Shirazi, and I. Mahdavi, “Anomaly network-based

intrusion detection system using a reliable hybrid artificial bee

colony and AdaBoost algorithms,” Journal of King Saud

University-Computer and Information Sciences, vol. 31, no. 4, pp.

541–553, 2019.

[31] S. Potluri and C. Diedrich, “High performance intrusion detection

and prevention systems: A survey,” in Proc. ECCWS2016, the 15th

European Conference on Cyber Warfare and Security, 2016.

[32] K. K. R. Amrita, “A hybrid intrusion detection system: Integrating

hybrid feature selection approach with heterogeneous ensemble of

intelligent classifiers,” International Journal of Network Security,

vol. 20, no. 1, pp. 41–55, 2018.

[33] L. N. Tidjon, M. Frappier, and A. Mammar, “Intrusion detection

systems: A cross-domain overview,” IEEE Communications

Surveys & Tutorials, vol. 21, no. 4, pp. 3639–3681, 2019.

[34] R. Saia, S. Carta et al., “A frequency-domain-based pattern mining

for credit card fraud detection,” in Proc. the 2nd International

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1352

Conference on Internet of Things, Big Data and Security (IoTBDS

2017), 2017, pp. 386–391.

[35] H. M. Chuang, H. Y. Huang, F. Liu, and C. H. Tsai, “Classification

of intrusion detection system based on machine learning,” in Proc.

the Second International Conference on Cognitive Cities, IC3 2019,

Springer, 2019, pp. 492–498.

[36] N. Munaiah, A. Meneely, R. Wilson, and B. Short. (2016). Are

intrusion detection studies evaluated consistently? A systematic

literature review. Technical Report of Rochester Institute of

Technology. [Online]. Available:

http://scholarworks.rit.edu/article/1810

[37] S. Bae, “Big-O notation,” in JavaScript Data Structures and

Algorithms, Springer, 2019, pp. 1–11.

[38] P. R. Kanna and P. Santhi, “Hybrid intrusion detection using

MapReduce based black widow optimized convolutional long

short-term memory neural networks,” Expert Systems with

Applications, vol. 194, 116545, 2022.

[39] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret,

“Shallow neural network with kernel approximation for prediction

problems in highly demanding data networks,” Expert Systems with

Applications, vol. 124, pp. 196–208, 2019.

[40] Y. Zhou, T. A. Mazzuchi, and S. Sarkani, “M-AdaBoost-A based

ensemble system for network intrusion detection,” Expert Systems

with Applications, vol. 2020, 113864, 2020.

[41] B. Ingre, A. Yadav, and A. K. Soni, “Decision tree based intrusion

detection system for NSL-KDD dataset,” in Proc. International

Conference on Information and Communication Technology for

Intelligent Systems, Springer, pp. 207–218, 2017.

[42] P. Verma, S. Anwar, S. Khan, and S. B Mane, “Network intrusion

detection using clustering and gradient boosting,” in Proc. 2018 9th

International Conference on Computing, Communication and

Networking Technologies (ICCCNT), IEEE, 2018, pp. 1–7.

[43] K. Chisholm, C. Yakopcic, M. S. Alam, and T. M. Taha,

“Multilayer perceptron algorithms for network intrusion detection

on portable low power hardware,” in Proc. 2020 10th Annual

Computing and Communication Workshop and Conference

(CCWC), IEEE, 2020, pp. 901–906.

[44] P. Negandhi, Y. Trivedi, and R. Mangrulkar, “Intrusion detection

system using random forest on the NSL-KDD dataset,” Emerging

Research in Computing, Information, Communication and

Applications, Springer, 2019, pp. 519–531.

[45] A. Ayodeji, Y.-K. Liu, N. Chao, and L.-Q. Yang, “A new

perspective towards the development of robust data-driven

intrusion detection for industrial control systems,” Nuclear

Engineering and Technology, vol. 52, no. 12, pp. 2687–2698, 2020.

[46] M. R. Begli, F. Derakhshan, and H. Karimipour, “A layered

intrusion detection system for critical infrastructure using machine

learning,” in Proc. 2019 IEEE 7th International Conference on

Smart Energy Grid Engineering (SEGE), IEEE, 2019, pp. 120–124.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1353

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N6-1345

