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Abstract—The ever-increasing use of services based on 

computer networks, even in crucial areas unthinkable until a 

few years ago, has made the security of these networks a 

crucial element for anyone, also in consideration of the 

increasingly sophisticated techniques and strategies available 

to attackers. In this context, Intrusion Detection Systems 

(IDSs) play a primary role since they are responsible for 

analyzing and classifying each network activity as legitimate 

or illegitimate, allowing us to take the necessary 

countermeasures at the appropriate time. However, these 

systems are not infallible due to several reasons, the most 

important of which are the constant evolution of the attacks 

(e.g., zero-day attacks) and the problem that many of the 

attacks have behavior similar to those of legitimate activities, 

and therefore they are very hard to identify. This work relies 

on the hypothesis that the subdivision of the training data 

used for the IDS classification model definition into a certain 

number of partitions, in terms of events and features, can 

improve the characterization of the network events, 

improving the system performance. The non-overlapping 

data partitions train independent classification models, 

classifying the event according to a majority-voting rule. A 

series of experiments conducted on a benchmark real-world 

dataset support the initial hypothesis, showing a performance 

improvement with respect to a canonical training approach.  

Keywords—intrusion detection, network security, training 

data, algorithm 

I. INTRODUCTION

The exponential growth of network-based technologies 

has given rise to a stimulating environment that today most 

people cannot give up, a scenario that involves countless 

important applications such as those related to 

communication systems, finance, education, the food 

industry, and health, as well as those related to recent 

technologies, such as the military and civilian drones. It 

should be observed how in recent years the number of 

devices connected through networks has increased 

dramatically due to the massive spread of devices related 

to the Internet of Things (IoT), which authoritative sector 

studies estimate will be around sixty billion by 2025 [1]. 

This enormous network of devices and services expands 

the audience of potential targets of the attackers, also by 

taking into account that the COVID-19 pandemic further 

increases these targets due to the need for many companies 

to allow their employees to work from home. In such a 

context, one of the most known and most dangerous 

attacks is Ransomware [2], directed more and more 

frequently against public and private objectives, with 

enormous financial and social costs. For this reason, in 

these years, in addition to a great commitment of financial 

and human resources aimed at defining increasingly 

efficient network services, we have witnessed an equally 

great commitment as regards the development of 

techniques and strategies able to grant the security of these 

services. 

However, the high degree of heterogeneity [3] that 

characterizes this environment makes this operation very 

difficult, due to both the continuous efforts of the attackers 

to violate the systems with more and more sophisticated 

techniques (a case in point is the difficulty of detecting the 

zero-day attacks [4]), and the problem that many attacks 

are often characterized by a behavior very similar to that 

of a legitimate network activity [5], making it difficult to 

detect them. To face these problems, researchers are 

constantly looking for more and more efficient Intrusion 

Detection Systems (IDSs) [6], which are designed using 

various techniques such as, just to name a few, those based 

on Machine Learning and Deep Learning [7, 8], Artificial 

Intelligence [9], Artificial Neural Networks [10–13], 

Fuzzy Logic [14], often combining more than one to define 

hybrid solutions [15]. Starting from the consideration that 

most of the approaches and strategies in the literature 

related to the IDS domain exploit the entire training set to 

define the classification model [5, 16–18], we have 

trivially observed that a training dataset refers to single 

events in terms of data rows and to the different features 

that characterize each event in terms of data columns. 

Consequently, taking advantage of this data 

configuration, we have defined a kind of divide-and-

conquer strategy, according to which: (i) the dataset is 

divided into a certain number (experimentally defined) of 

partitions without overlapping, each of them that refers to 

certain events and features; (ii) each partition is used to Manuscript received April 24, 2023; revised May 30, 2023; accepted 
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train an independent classification model; (iii) the final 

event classification is reached using all model 

classifications according to a majority-voting rule. In other 

words, this works proposes a Training Data Partitioning 

approach aimed to improve the characterization of the 

network events, then the IDS performance, experimentally 

verifying what we previously hypothesized and 

formalized [19], providing the following main 

contributions: 

• Definition of the Training Data Partitioning (TDP) 

approach aimed to partition a training dataset 

according to an optimal number of events (data 

rows) and features (data columns); 

• Formalization of the rules needed to partition a 

training dataset regardless of its number of rows 

and columns, and to perform the classification 

process also when it is not possible to apply the 

majority-voting rule, i.e., when an event receives 

the same number of votes in the normal and 

intrusion classes; 

• Definition of an intrusion detection algorithm that 

exploits the proposed TDP approach, analyzing 

and classifying each network event as normal or 

intrusion; 

• Adoption of an experimental criterion aimed to 

face overfitting problems, which ensures an 

effective separation between the data used to select 

the most performing baseline classifier and the 

optimal number of dataset partitions, and the data 

used during the validation process, combining this 

criterion with a canonical k-fold cross-validation 

one. 

Although other works in the literature have already 

considered partitioning the training data, for instance, to 

parallelize the training process of a classification or 

regression model (e.g., distributing the process across 

many computing nodes [20]), or to face the limits of the 

hardware resources (e.g., in terms of memory in case of 

big datasets [21]), to the best of our knowledge, there are 

no significant works where this operation was aimed at a 

better characterization of the dataset samples to improve 

the classification performance. 

The remainder of this paper is structured in the 

following way: Section II discusses the background and 

the related works concerning the intrusion detection 

research domain; Section III introduces the formal 

notation we used along with the formalization of the 

problem to face; Section IV explains the proposed 

approach and its implementation; Section V describes the 

development environment, the adopted real-world dataset, 

the experimental methodology, and the process of 

selection of the state-of-the-art baseline classifier, 

reporting and discussing the experimental results; 

Section VI concludes this work with some remarks, 

making mention of future research directions. 

II. BACKGROUND AND RELATED WORK 

The concept of intrusion understood as an attempt to 

gain access to the resource of a network illegally was 

coined many years ago in conjunction with the spread of 

network services, public and private [22]. Since then, 

literature has dealt with the aspects related to this potential 

threat, from the theoretical ones [23] to the practical ones 

concerning the contexts that have gradually emerged over 

the years, such as those related to the Internet of Things 

(IoT), Cloud Computing, Smart Cities, or health-care 

environments. 

The IDSs analyze network traffic to identify illegal 

access attempts to the network or the improper use of the 

involved resources, as some attacks do not have the main 

objective of illegitimately exploiting resources but, for 

instance, putting them out of service, as it happens with the 

Denial of Service (DoS) or Distributed Denial of Service 

(DDoS) attacks often reported by the media [24].  

It can base its operation on different modalities, the 

most common of them are: (i) anomaly-based, according 

to which it classifies the network activities based on a 

rules/heuristic-based strategy, then by analyzing their 

behavior instead querying a database of known 

patterns [25]; (ii) signature-based, where the new network 

activity pattern is compared to the known patterns stored 

in a database, and it is classified based on the basis of this 

comparison process [26]; (iii) specification-based, 

according to which the system inspects the involved 

protocols to detect anomalous sequences that may refer to 

an attack in progress [27]; (iv) hybrid-based, which does 

not represent a pure modality but a combination of the 

previous ones [28]. 

Discussing the pros and cons of the above methods: an 

anomaly-based IDS can face attacks such as the zero-days 

ones and, more generally, attacks characterized by an 

anomalous behavior but it presents a limitation given by 

its long response-time, which represent a crucial problem 

in a highly dynamic environment such as the one in which 

it operates; a signature-based IDS well operates in the 

context of known attacks and variations of them but its 

main limitation is given by the inability to inspect the 

involved protocols and the high computational load 

required by the classification process; a specification-

based IDS can inspect the protocols related to the network 

activities to detect anomalous behaviors but it is not able 

to differentiate the legitimate and illegitimate activities 

that have the same behavior and, in addition, the protocol 

inspection/tracing capability generates a high 

computational load; a hybrid-based IDS is obviously 

characterized by the same pros and cons of the methods 

that it adopts. 

As regards the method of detecting network activities in 

terms of the number and location of the IDSs, the literature 

indicates four main categories: (i) Host-based Intrusion 

Detection Systems (HIDSs) [29], which exploits several 

hosts to detect the network activity; (ii) Network-based 

Intrusion Detection Systems (NIDSs) [30], which adopts 

only a host to detect the network activity; (iii) Network-

Node-based Intrusion Detection Systems (NNIDSs) [31], 

which exploit a single host strategically placed in the 

network; (iv) Distributed-based Intrusion Detection 

Systems (DIDSs) [32], which combines the 

aforementioned categories to detect the network activity. 
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A further subdivision of the IDSs based on the type of 

response to the attacks groups them into two broad 

categories, active and passive [33]: active, when in 

response to an attack, in addition to recording the activity 

(log) and forwarding the alerts, the IDS reconfigures the 

network to counteract the activities of the attackers; 

passive, when in response to an attack the IDS only records 

the related network activity, forwarding the needed alerts, 

without putting in place any active countermeasure.  

The discussed classifications of the IDSs based on their 

operational mode are summarized in Fig. 1. 

 

 

Figure 1. Intrusion detection systems modes. 

Similar to other research domains (e.g., Fraud 

Detection [34]), where the main objective is the 

identification of numerically rare events, the performance 

evaluation metrics used in this domain must take into 

account the high degree of data imbalance that usually 

characterizes the data, as to get reliable evaluations not 

biased by the majority class of samples. 

In the Intrusion Detection domain, the minority class is 

the intrusion one and the IDSs usually operate according 

to a binary criterion [35], classifying each network event 

as normal or intrusion. It means that the metrics to be 

considered are those suitable for the evaluation of binary 

classifiers such as, for example, those based on the 

confusion matrix, i.e., a matrix 22 that reports the number 

of True Negatives (TN), False Negatives (FN), True 

Positives (TP), and False Positives (FP), as shown in 

Fig.  2. 

Some examples of confusion-matrix-based metrics 

widely used in this research field are the Accuracy, the 

True Positive Rate, and the True Negative Rate but to deal 

with the imbalance problem such metrics are often flanked 

by other ones [36] that are not influenced by this data 

characteristic, such as those based on the Receiver 

Operating Characteristic (ROC) curve, as the Area Under 

the Receiver Operating Characteristic Curve (AUC). 

 

 

Figure 2. Confusion matrix. 

III. NOTATION AND PROBLEM DEFINITION 

Specifying that we used the notation |𝐸| to indicate the 

cardinality of the set 𝐸, we denote as 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑁} a 

set of network events composed of a subset 𝐸+ =
{𝑒1

+, 𝑒2
+, … , 𝑒𝑋

+} of normal events (𝐸+ ⊆ 𝐸), a subset 𝐸− =
{𝑒1

−, 𝑒2
−, … , 𝑒𝑌

−} of intrusion events (𝐸− ⊆ 𝐸), and a subset 

of 𝐸̂ = {𝑒1̂, 𝑒2̂, … , 𝑒𝑀̂} unclassified events (𝐸̂ ⊆ 𝐸). 

According to the above notation, we have 𝐸 =

(𝐸+  ∪   𝐸−  ∪   𝐸̂) , where each event 𝑒 ∈ 𝐸  is 

characterized by a series of features 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑊}, 

and it can only belong to one of the two classes in 𝐶 =
 {𝑛𝑜𝑟𝑚𝑎𝑙, 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛}. 

In addition, we denote as 𝑇 = {𝑒1, 𝑒2, … , 𝑒𝐾} (given by 

𝐸+ ∪ 𝐸−) the training set, which can be partitioned into 

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑍} partitions, according to the operation 

as 𝑃(𝐸𝑅,𝐹𝐶), with 𝐸𝑅 the number of Event Rows, and 𝐹𝐶 

the number of Feature Columns, then |𝑃| = 𝑍 = (𝐸𝑅 ×
𝐹𝐶). 

Given the set 𝐸, this means that: each partition can be 

composed of 
𝑁

𝐸𝑅
 events and 

𝑊

𝐹𝐶
 features, since |𝐸| = 𝑁 and 

|𝐹| = 𝑊; the bounds of 𝐸𝑅 is 1 ≤ 𝐸𝑅 ≤ |𝑇| and that of 

𝐹𝐶 is 1 ≤ 𝐹𝐶 ≤ |𝐹|, then the pair of values 𝐸𝑅 = 𝐹𝐶 = 1 

indicates the canonical data configuration without 

partitioning. 

It should be noted that each partition defined according 

to the ER value must contain samples that belong to both 

classes in C, to allow us the training of the evaluation 

model. Since we consider the intrusion detection problem 

in binary terms, according to the provided notation we can 

formalize it as shown in Eq. (1), denoting the intrusion 

detection approach as Ξ, and the evaluation function (it 

returns 1 if the classification is correct,  0 otherwise) of an 

event 𝑒̂ as 𝑒𝑣𝑎𝑙(𝑒̂, Ξ), so our problem can be expressed in 

terms of maximization of the 𝜂 value (|𝐸̂| represents the η 

upper bound). 

 max
0≤𝜂≤|Ê|

𝜂 = ∑ 𝑒𝑣𝑎𝑙(𝑒̂𝑚, Ξ)|𝐸̂|
𝑚=1  (1) 

This means that the maximum value returned by Eq. (1) 

can only be achieved by an ideal intrusion detection 

approach able to correctly classify all the events, i.e., the 

goal to aim for. 

IV. PROPOSED APPROACH 

The problem previously defined in Eq. (1) needs to be 

transposed into the proposed TDP approach, then revised 

by subdividing the classification process according to the 

number of training set partitions. 

It means that the evaluation process is now composed of 

𝑍  sub-processes (i.e., |𝑃| = 𝑍 ), then the Ξ  intrusion 

detection approach is executed 𝑍  times, and the final 

classification of the event depends on the result of each 

execution: for example, assuming we have the values 𝐾 =
4 , 𝑊 = 4 , 𝐸𝑅 = 2 , 𝐹𝐶 = 2 , which means that we 

subdivide the training set T into |𝑃| = 𝑍 = (2 × 2) = 4 

partitions, each of them composed of 
𝐾

𝐸𝑅
=

4

2
= 2 events 

and 
𝑊

𝐹𝐶
=

4

2
= 2  features. In this way, the process of 
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training of each evaluation model m uses, respectively, the 

events and features in each p1, p2, p3, p4 partitions of 

Eq.  (2), generating four m1, m2, m3, and m4 evaluation 

models. 

 

 𝑃(2,2) =
𝑝1  𝑝2

𝑝3  𝑝4
⇒  

𝑓1,1  𝑓2,1

𝑓1,2  𝑓2,2

𝑓3,1  𝑓4,1

𝑓3,2  𝑓4,2

𝑓1,3  𝑓2,3

𝑓1,4  𝑓2,4

𝑓3,3  𝑓4,3

𝑓3,4  𝑓4,4

⇒  
𝑚1  𝑚2

𝑚3  𝑚4
   (2) 

A. Data Partitioning Criteria 

Given that the number of partitions determined by the  

𝐹𝐶 and ER values may not exactly partition the features 

(data columns) and events (data rows), i.e., when 
(|𝐹| 𝑚𝑜𝑑 𝐹𝐶) ≠ 0  or (|𝑇| 𝑚𝑜𝑑 𝐸𝑅) ≠ 0 , we need to 

define a criterion able to overcome this problem. 

Starting from the notation provided in Section III, we 

denote 𝜇1 = (|𝐹| 𝑚𝑜𝑑 𝐹𝐶)  and 𝜇2 = (|𝑇| 𝑚𝑜𝑑 𝐸𝑅) ,  

formalizing the needed criterion, respectively for the set F 

and T, as shown in Eq. (3). Intending to not bias the 

original information, such a criterion adopts two different 

strategies: concerning the set F , it duplicates the last 

feature column μ1 times, whereas concerning the set 𝐹, it 

duplicates the last μ2 event rows, as to avoid adding events 

that belong to the same class in C. 

𝐹   ⇒    𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑊, 𝑓𝑊+1, 𝑓𝑊+2, … , 𝑓𝑊+μ1
} 

with 𝑓𝑊+1 = 𝑓𝑊+2 = ⋯ = 𝑓𝑊+μ1
= 𝑓𝑊                   

  (3) 

𝑇   ⇒    𝑇 = {𝑒1, 𝑒2, … , 𝑒𝐾 , 𝑒𝐾+1, 𝑒𝐾+2, … , 𝑒𝐾+μ2
} 

with 𝑒𝐾+1 = 𝑒𝐾 , 𝑒𝐾+2 = 𝑒𝐾−1, … = 𝑒𝐾+𝜇2
= 𝑒𝐾−𝜇2

 

Another criterion is instead aimed to solve the problems 

that happen when it is not possible to apply the majority-

voting rule since the two possible destination classes (i.e., 

normal and intrusion) receive the same number of votes. 

It introduces a discriminating classification obtained by 

defining a further evaluation model trained on the entire E 

set (canonical approach), generating in this way 

𝑐1, 𝑐2, … , 𝑐𝑍, 𝑐𝑍+1 classifications. 

By way of example, assuming a scenario with ER =
FC = 2, which generates the 𝑚1, 𝑚2, 𝑚3, 𝑚4 classification 

models that lead toward the 𝑐1, 𝑐2, 𝑐3, 𝑐4 classifications for 

an event, where we assume that two of them are normal 

and the other two are an intrusion, the final classification 

is reached by adding the classification 𝑐5 obtained through 

a further evaluation model trained on the entire set T.  

The formalization of all possible classification cases is 

shown in Eq. (4), where 𝑐1 and 𝑐2  indicate, respectively, 

normal and intrusion elements in set C. 
We experimented that such two criteria do not 

significantly alter the involved processes, also because 

they are applied to both the training and test set, and for 

simplification reasons, from now on, we will consider their 

application as an internal preprocessing step applied 

during the data partition process. 

𝑐1,  𝑖𝑓 ∑ ω(𝑐𝑖 , 𝑐1)

𝑍

𝑖=1

> ∑ ω(𝑐𝑖 , 𝑐2)

𝑍

𝑖=1

 

𝑐2,  𝑖𝑓 ∑ ω(𝑐𝑖 , 𝑐1)

𝑍

𝑖=1

< ∑ ω(𝑐𝑖 , 𝑐2)

𝑍

𝑖=1

 

𝑐1,  𝑖𝑓 ∑ ω(𝑐𝑖 , 𝑐1)

𝑍

𝑖=1

= ∑ ω(𝑐𝑖 , 𝑐2)

𝑍

𝑖=1

∧ 𝑐𝑍+1 = 𝑐1 

𝑐2,  𝑖𝑓 ∑ ω(𝑐𝑖 , 𝑐1)

𝑍

𝑖=1

= ∑ ω(𝑐𝑖 , 𝑐2)

𝑍

𝑖=1

∧ 𝑐𝑍+1 = 𝑐2 

with 

                           𝜔(𝑎, 𝑏) =  {
0, 𝑖𝑓 𝑎 ≠ 𝑏
1, 𝑖𝑓 𝑎 = 𝑏

 

  (4) 

B. Data Classification Algorithm 

The criteria previously formalized allow us to apply the 

proposed TDP approach to any dataset, according to 

Algorithm 1, which performs the classification of the new 

network events. It takes as input a baseline classification 

algorithm 𝛽, the set of classified events T (i.e., the training 

set), the set 𝐸̂  of unclassified events, the 𝐸𝑅  and 𝐹𝐶 

values that determine the data partitioning, returning as 

output the classification of all the events in the set 𝐸̂.  

It should be noted that Algorithm 1 is formalized in 

terms of pseudocode using functions that explicitly refer to 

canonical (e.g., trainModel and 

getMajorityVotingClassifications) and related to our 

approach (e.g., getPartitions and getEventClass), which 

have been previously formalized. 

 

Algorithm 1. TDP classification 

Require: β=Baseline classification algorithm, 

T=Training set, Ê=Events to evaluate, ER=Event rows, 

FC=Feature columns 

Ensure: Ē=Classification of all the events in the set Ê 

1. procedure getTDP(β, T, Ê, ER, FC) 

2.     if(ER x FC) is even) then 

3.         m’’ ← trainModel(β, T) 

4.     end if 

5.     p ← getPartitions(T, ER, FC) 

6.     for all p in P do 

7.         m ← trainModel(β, p) 

8.         M.add(m) 

9.      end for 

10.     for all ê in Ê do 

11.         P’’← getPartitions(ê, ER, FC)  

12.         for all m in M do 

13.             c ← getEventClass(m’’, ê) 

14.             C.add(c) 

15.         end for 

16.         if(ER x FC) is even then  

17.            c’’ ← getEventClass(m’’, ê) 

18.            C.add(c’’) 

19.         end if 

20.         Ē.add(getMajorityVotingClassification(ê, C) 

21.     end for          
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In more detail: at steps from 2 to 4 an evaluation model 

is trained by using the entire set E, if the numbers of 

partitions (i.e., Z = |ER  FC|) is even; at step 5 the training 

test T is processed in order to define the partitions, 

according to the ER and FC values; for each partition, at 

steps from 6 to 9, an evaluation model of the algorithm 𝛽 

is trained; the classification of the events in 𝐸̂ is performed 

from step 10 to 21, where at step 11 the features of the 

unevaluated event 𝑒̂ are divided into partitions, according 

to the ER and FC values, at steps from 12 to 15 each 

evaluation models in M provide an event classification, 

and an additional canonical classification based on the 

model trained at step 3 is added to the set C when if the 

number of involved partitions is even (steps from 16 to 19); 

at step 20 the event 𝑒̂ is classified according the majority-

voting rule, and the classification is added to the set 𝜅, 

which is returned by the algorithm at step 22, with the 

classification of all the events in the input set (i.e., 𝐸̂). 

Computational Complexity. The TDP approach does 

not present an excessive computational complexity [37], 

also considered that the involved tasks can be distributed 

over several processes and/or machines, for example using 

frameworks such as MapReduce [38]. 

C. Approach Architecture 

All the elements previously described that compose the 

proposed TDP approach are summarized in the high-level 

description of Fig. 3, according to the Algorithm 1 

processes. It starts from a preprocessing step, where the 

training set T and the unclassified events set 𝐸̂  are 

managed through the criteria formalized in Section IV-A.  

Subsequently, the data partitioning is carried out based 

on the ER and FC values, and the related classification 

models are trained and used in the last step, where all the 

classifications decide the event classification using the 

majority-voting rule. 

 

 

Figure 3. TDP high-level architecture. 

V. EXPERIMENTS 

We carried out all the experiments using an 11th 

Generation Intel Core i7-1165G7, 2.80GHz  8 CPUs 

machine, with 16 GB of RAM, Linux operating system 

with kernel 5.10.0-14-amd64, and the Python language 

with the Scikit-learn (http://scikit-learn.org) library. In 

addition, to ensure the reproduction of the experiments, we 

fixed the pseudo-random number generator seed of the 

Scikit-learn to 1.  

A. Dataset 

The real-world dataset used for the validation process, 

the NSL-KDD (https://www.unb.ca/cic/datasets/nsl.html), 

can be considered a benchmark dataset in the intrusion 

detection field [39]. Considering that many works in the 

literature adopted it, the use of this dataset allows anyone 

to compare them. 

The network events in the dataset are related to the UDP, 

TCP, and ICMP protocol activity, including many types of 

attacks. The NSL-KDD dataset release contains 148,517 

events (77,054 normal events and 71,463 intrusion events). 

Each event contains 43 features (4 categorical, 6 binary, 23 

discrete, and 10 continuous), involving four different 

classes of network attacks (120 Privilege Escalation, 

53,387 Denial of Service, 14,077 Remote Scanning, and 

3,879 Remote Access). Tables I and II report the main 

characteristics of the dataset. 

TABLE I. NSL-KDD DATASET OVERVIEW 

Total Events 

|E+| + |E−| 

Normal 

|E+| 

Intrusion 

|E−| 

Features 

|F| 

Classes 

|C| 

148,517 77,054 71,463 43 2 

TABLE II. NSL-KDD NETWORK ATTACKS CLASSES 

Class Attacks Type Description 

1 120 
Privilege 

Escalation 

Aimed to obtain a privileged 

access as unprivileged user (e.g., 

Buffer overflow, Rootkit, Perl, 

Loadmodule, Xterm, Sqlattack, 

and Ps). 

2 53,387 
Denial of 

Service 

Aimed to block a service/system 

generating an huge number of 

normal network activities (e.g., 

Mail-bomb, Land, Back, Pod, 

Smurf, Neptune, Teardrop, 

Udpstorm, Processtable, Worm, 

and Apache2). 

3 14,077 
Remote 

Scanning 

Aimed to get details about a 

service/system through a series 

of invasive and non-invasive 

approaches (e.g., Nmap, 

IPsweep, Satan, Portsweep, 

Saint, and Mscan). 

4 3,879 
Remote 

Access 

Aimed to obtain a remote system 

access by exploiting different 

techniques (e.g., Ftp write, 

Guess password, Imap, Phf, 

Warez-master, Multihop, 

Xsnoop, Xlock, Snmpguess, 

Httptunnel, Snmpgetattack, 

Named, and Sendmail). 

 

B. Methodology 

As preprocessing steps: (i) we transformed the dataset’s 

categorical features into a numerical one; (ii) we 

introduced a class feature that classifies each event 

according to a binary criterion, using the value 0 for the 

normal events, and the value 1 for the intrusion ones, 

removing the original attack-type label for each event. 
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We carried out all the experiments according to a 

preliminary division of the dataset into two parts:  

1. An in-sample part (80%), used to detect the most 

performing classification baseline algorithm in the 

context of the canonical and TDP approaches, and 

to detect the optimal number of TDP partitions (i.e., 

ER and FC values);  

2. An out-of-sample part (20%), used to perform the 

validation process, where we compare the perfor-

mance of the TDP approach to that of the canonical 

one. 

Such a methodology avoids overfitting since it provides 

an effective separation between the data related to the 

different data processes, where we also apply a canonical 

k-fold cross-validation criterion with k = 5. 

For performance assessment, we use three metrics 

widely used in this domain: the True Negative Rate (TNR), 

the True Positive Rate (TPR), and the Area Under the 

Receiver Operating Characteristic Curve (AUC). 

C. Baseline Algorithms 

We selected the most performing state-of-the-art 

classification algorithm by testing the intrusion detection 

performance of several algorithms widely used for this 

task in the literature, using only the in-sample part of the 

dataset. 

TABLE III. BASELINE ALGORITHMS PARAMETERS 

Algorithm Parameters 

Adaptive 

Boosting 

algorithm=’SAMME.R’, base_estimator=None, 

learning_rate=1.0, n_estimators=50, random_state=1 

Decision 

Tree 

class_weight=None, criterion=’gini’, max_depth=None, 

max_features=None, max_leaf_nodes=None, 

min_impurity_decrease=0.0, min_impurity_split=None, 

min_samples_leaf=1, min_samples_split=2, 

min_weight_fraction_leaf=0.0, presort=False, 

random_state=1, splitter=’best’ 

Gradient 

Boosting 

criterion=’friedman_mse’, 

init=None, 

learning_rate=0.1, 

loss=’deviance’, 

max_depth=3, 

max_features=None, max_leaf_nodes=None, 

min_impurity_decrease=0.0, min_impurity_split=None, 

min_samples_leaf=1, min_samples_split=2, 

min_weight_fraction_leaf=0.0, n_estimators=100, pre- 

sort=’auto’, random_state=1, subsample=1.0, 

verbose=0, warm_start=False 

Multilayer 

Perceptron 

activation=’relu’, alpha=0.0001, batch_size=’auto’, 

beta_1=0.9, beta_2=0.999, early_stopping=False, 

epsilon=1e-08, 

hidden_layer_sizes=(100,), 

learning_rate=’constant’, 

learning_rate_init=0.001, 

max_iter=200, momentum=0.9, 

nesterovs_momentum=True, power_t=0.5, 

random_state=1, shuf- 

fle=True, solver=’adam’, tol=0.0001, 

validation_fraction=0.1, verbose=False, 

warm_start=False 

Random 

Forests 

bootstrap=True, class_weight=None, criterion=’gini’, 

max_depth=None, max_features=’auto’, 

max_leaf_nodes=None, min_impurity_decrease=0.0, 

min_impurity_split=None, min_samples_leaf=1, 

min_samples_split=2, min_weight_fraction_leaf=0.0, 

n_estimators=10, n_jobs=1, oob_score=False, 

random_state=1, verbose=0, warm_start=False 

The algorithms we take into consideration are Adaptive 

Boosting [40], Decision Tree [41], Gradient Boosting [42], 

Multilayer Perceptron [43], and Random Forests [44]. The 

algorithms parameters are reported in Table III, whereas 

the measured performance is shown in Table IV, where the 

results indicate Random Forests as the most performing 

algorithm (the best performance is highlighted in bold).  

TABLE IV. IN-SAMPLE ALGORITHMS PERFORMANCE 

Algorithm TNR TPR AUC 

Adaptive Boosting 0.9518 0.9565 0.9539 

Decision Tree 0.9747 0.9738 0.9737 

Gradient Boosting 0.9747 0.9738 0.9737 

Multilayer Perceptron 0.9141 0.9003 0.9031 

Random Forests 0.9849 0.9900 0.9877 

D. Optimal Data Partitioning 

The experiments performed in this step are aimed to 

detect the optimal number of data partitions for the 

proposed TDP approach, then the ER and FC values. The 

process took place using the Random Forests algorithm 

previously selected and the in-sample part of the dataset, 

where during the experiments we applied the k-fold cross-

validation criterion based on five folds (i.e., k = 5). 

The optimal parameters were selected by considering all 

the metrics discussed in Section V-B (i.e., TNR, TPR, and 

AUC). 

The results indicate ER = 1 and FC = 2 as optimal values 

in the context of the RF algorithm we selected in 

Section  V-C. This is visible in Table V, where to simplify, 

we report only the most significant range of values (the 

best performance is highlighted in bold). 

TABLE V. IN-SAMPLE DATA PARTITIONING VALUES TUNING 

ER FC TNR TPR AUC 

1 1 0.9849 0.9900 0.9877 

1 2 0.9993 0.9998 0.9995 

1 3 0.9992 0.9961 0.9978 

2 1 0.9984 0.9961 0.9989 

2 2 0.9987 0.9997 0.9991 

2 3 0.9938 0.9968 0.9950 

3 1 0.9983 0.9991 0.9987 

3 2 0.9984 0.9995 0.9989 

3 3 0.9947 0.9962 0.9953 

 

It should be noted that the pair of values ER = 1 and FC 

= 1 represents the canonical data configuration without 

data partitioning. 

E. Results 

After identifying the most performing baseline 

algorithm (Section V-C) and the optimal parameters for 

partitioning data under the proposed approach (Section V-

D), performing both the processes in the in-sample part of 

the dataset, the next step is to compare our TDP approach 

with the canonical one. We perform this operation in the 

out-of-sample part of the dataset, as to obtain reliable 

results not influenced by overfitting. 

In addition, we made all the experiments according to 

the k-fold cross-validation criterion with k = 5. The results 

are reported in Table VI, where the best performance is 

highlighted in bold. 
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TABLE VI. OUT-OF-SAMPLE PERFORMANCE 

Approach Algorithm TNR TPR AUC 

Canonical Random Forests 0.9868 0.9870 0.9867 

TDP Random Forests 0.9913 0.9933 0.9924 
 

F. Discussion 

Based on the performed experiments and the related 

results we can make the following considerations: 

• The process aimed at defining the data partitioning 

values (i.e., ER and FC), carried out using the in-

sample part of the dataset, has identified ER = 1 

and FC = 2 as optimal data partitioning values, 

indicating that no partitioning will be made in 

terms of events; 

• The performance comparison between the 

canonical approach (i.e., based on a classification 

model trained on the entire training set) and the 

proposed TDP one, which we made using the out-

of-sample part of the dataset, shows that TDP 

outperforms the canonical approach; 

• In more detail, the results of the performance 

comparison reported in Table VI indicate that TDP 

outperforms the canonical approach in terms of all 

the considered evaluation metrics (i.e., TNR, TPR, 

and AUC), supporting the hypothesis behind this 

work; 

• Despite the improvements in performance may 

appear modest, the results are promising since in 

the intrusion detection domain there are many 

scenarios [45, 46] where the IDSs operate 

continuously (24 hours a day and 365 days a year), 

then also minor improvements lead to the detection 

of a significant number of intrusion events, with all 

the consequent advantages; 

• Just by way of example, even considering a limited 

number of events such as those present in the used 

NSL-KDD dataset, the performance gain we have 

achieved in terms of TPR and TNR (respectively, 

+0.0063 and +0.0045) made it possible to correctly 

identify a further 485 legitimate activities (normal 

events) and 321 attacks (intrusion events); 

• An additional performance analysis, aimed at 

verifying that the increase in performance in terms 

of TPR and TNR did not depend on the increasing 

of false positives and/or false negatives cases 

(although the measured improvement in terms of 

AUC can rule this out), showed that the proposed 

approach also gets an improvement in this sense, 

with a False Positive Rate value that going down 

from 0.0132 to 0.0087, and a False Negative Rate 

value that going down from 0.0130 to 0.0067; 

• The experimental results demonstrate that the 

training data partitioning on which the proposed 

approach relies can improve the performance of an 

IDS, and this is also further supported by the 

adoption of a double validation criterion (in-

sample}/out-of-sample and k-fold cross-validation) 

during the experiments, which provides us reliable 

results not influenced by overfitting; 

• In other words, the performed experiments have 

shown the effectiveness of such an approach, 

where non-overlapping data partitions train 

independent classification models combined 

according to a majority-voting rule, and in this 

regard, it is necessary to consider that we operate 

in a challenging domain characterized by a high 

level of data heterogeneity, a similarity between 

some legitimate and illegitimate classes of events, 

as well as a limited room for improvement given 

by the good performance achieved by the state-of-

the-art approaches; 

• In conclusion, since the proposed approach can 

improve the performance of a baseline algorithm, 

it can be adopted in many state-of-the-art 

approaches that exploit this algorithm to improve 

their performance. 

VI. CONCLUSION AND FUTURE WORK 

Given the increasing dependence of people on public 

and private network services, the security of such networks 

has long become a crucial requirement, albeit very difficult 

to ensure due to the high dynamism of the involved factors. 

In this scenario, the IDSs play a primary role since they 

analyze and classify network events to identify any 

unauthorized use. These systems must face the continuous 

evolution of the techniques used by the attackers, with the 

complication that many attacks have a behavior very 

similar to that of normal network activities. 

To improve the characterization of the network events 

to mitigate this kind of problem, this work proposed a TDP 

approach that relies on the partitioning of training data in 

terms of time (event rows) and characteristics (feature 

columns). The event classification is made using multiple 

classification models trained individually on each of these 

partitions, whose results define the event classification 

according to a majority-voting rule. 

The validation process, the results of which are to be 

considered reliable thanks to the adoption of a double 

criterion (in-sample/out-of-sample and k-fold cross-

validation) aimed at avoiding overfitting problems, proved 

the validity of the proposed TDP approach, showing 

improvements in terms of TNR, TPR, and AUC, compared 

to the canonical approach. 

In future work, we plan to experiment with the proposed 

approach in the context of different domains/datasets, as to 

explore the relations between the optimal number of 

partitions and the involved data type and domain. This is 

because, although the double validation criterion we have 

adopted (in-sample/out-of-sample e k-fold cross-validation) 

guarantees us that the results obtained do not depend on 

randomness (k-fold cross-validation) or overfitting 

problems (in-sample/out-of-sample), investigating the 

relationships between the optimal number of partitions and 

the context of the data provides elements for further 

improvements of the approach. 
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