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Abstract. The growing availability of low-cost devices able of performing an
Electroencephalography (EEG) has opened stimulating scenarios in the security
field, where such data could be exploited as a biometric approach for user iden-
tification. However, a series of problems, first of all, the difficulty of obtaining
unique and stable EEG patterns over time, has made this type of research a hard
challenge that has forced researchers to design ever more efficient solutions. In
this context, one of the approaches that has proved most effective is the one based
on the application of external stimuli to the user during the EEG data collection, a
stimulation method named Evoked Potentials (EPs), which is long used for other
purposes in the clinical setting, in this context used to increase the EEG patterns
stability. The combination of EEG and EP has generated an ever-increasing num-
ber of literature works but their heterogeneity makes it difficult to take stock of
the state-of-the-art, so this work aims to analyze the literature of the last six years,
providing information useful for directing the research of those who work in this
field.
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1 Introduction

Nowadays, the availability on the market of affordable and easy-to-use sensors capa-
ble of detecting EEG data has opened many new research directions ranging from the
canonical ones related to health [60,34], up to the once unthinkable ones concerning ap-
plications in various fields such as, for example, those concerning security, where these
data are used to create biometric systems [27]. Formally named Electroencephalogram
(EEG) [52], the EEG data are captured by analyzing the brain electrical activity through
some electrodes positioned on the user’s head, electrodes which vary in number and
positioning depending on both the applicative scenario and the used hardware. In more
detail, they are placed on the user’s scalp in a non-invasive way, directly or through a
conductive paste. Also in this case it depends on the scenario and hardware: most of
the low-cost devices do not require any paste or manual positioning, as they are applied
to the user through a light headband/headset, whereas other more professional devices
(e.g., those used in the medical field) usually require a manual positioning and a greater
number of electrodes applied through a conductive paste.
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The cortex is the largest area of our brain, it is made up of four lobes. The frontal
lobe refers to executive functions (e.g. conscious thought). The temporal lobe relates to
language, understanding, and memory and processes complex stimuli (e.g., scene and
face recognition). The parietal lobe refers to sensory information integration related to
different senses and the manipulation of objects. Finally, the occipital lobe refers to the
vision activity. Moreover, we also have the cerebellum, which controls motor skills and
is located at the back of the brain (below the occipital and temporal lobes).

In an adult user, the brain electrical activity measured by the EEG is typically from
10 to 100 millivolts. The electrodes are placed on the scalp according to the Interna-
tional 10-20 System reported in Fig. 1, where each electrode placement is identified by
letters and numbers that refer to the lobe and the hemisphere location. In more detail,
the letters C, F, P, O, and T refer to the lobes (Central, Frontal, Parietal, Occipital, and
Temporal). Notably, the Central lobe does not exist and is used only for reference). In
contrast, the even numbers refer to the right hemisphere, and the odd numbers refer to
the left hemisphere. The letter z is used to indicate an electrode located on the center-
line; in addition, smaller numbers indicate values closer to the median line. The point
between the forehead and nose is called Nasion, while the point at the back of the skull
is the Inion.

The human brain contains billions of neurons, each connected to thousands of oth-
ers, creating a massive network of brain circuits that communicate through electrical
signals in the order of microvolts. The activation of a neuron generates electrical pulses,
and this activity is called brain waves. The brain waves are related to five areas, each
denoted using a Greek letter and characterized by a different frequency range (from 4
to 100 Hz), and all operate simultaneously. Accordingly, the EEG activity is divided
into frequency bands: The Delta wave is less than 4 Hz. The Theta wave is in the range
between 4 and 8 Hz. The Alpha wave is in the range between 8 and 12 Hz. The Beta
wave is in the range between 12 and 30 Hz. The Gamma wave is greater than 30 Hz.
The literature indicates a strong correlation between the slowest rhythms of the brain
waves and the inactive brain state, and the fastest rhythms of them and the brain pro-
cessing of information, as well as that the deep sleep status has low frequency and high
amplitude oscillations. On the other hand, the wakefulness status has high frequency
and low amplitude oscillations.

1.1 Motivations and Contributions

Compared to other biometric systems, such as, for instance, those based on fingerprints
or retinal, few works in the literature propose biometric systems based on EEG that
are suitable for large-scale utilization. This is due to some limitations, for instance, the
acquisition protocols that result unsuitable for user identification applications (e.g., due
to positioning and number of electrodes, acquisition time, etc.) and the difficulty of
obtaining stable patterns over time. In light of these aspects and based on the evaluation
metrics primarily used in biometrics, in this work, we aim to explore the literature
related to the biometric approaches that combine EEG and EP in the period from 2017
to 2022 to take stock of the situation, providing useful findings for anyone working in
this research field. The scientific contributions of our work are reported in the following:
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Fig. 1. 10-20 system EEG Electrode Placement.

- It analyzes the last six-year state of the art of biometric systems that use EEG data
and EP stimuli (i.e., visual, auditory, and vibration ones) to evaluate the practical
feasibility of these systems for large-scale biometric user identification applica-
tions.

- It surveys these literature works concerning the hardware devices, the adopted tech-
niques, the open problems, the assessment metrics, and the data collection proto-
cols.

- It compares the performance of these works, underlining the current challenges and
indicating the direction taken by researchers in the development of these systems.

2 Research Scenario

This section starts by introducing the widespread low/medium-cost devices capable of
acquiring EEG data (Section 2.1), continuing with providing information about the dif-
ferent biometric methods aimed to perform the user identification task (Section 2.2),
the related open problems (Section 2.4), the different EP techniques (Section 2.3), con-
cluding by discussing the assessment metrics largely used in the biometric systems area
(Section 2.5).

2.1 EEG Data Acquisition

Table 1 reports the popular low/medium cost devices capable of acquiring EEG data,
all of them usually characterized by a construction that allows easy use. This means
that the electrodes do not require any conductive paste for the application and they are
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positioned on the users’ skull through a sort of headband/headset, and the connections
are made wirelessly. It should be noted that some of the cited manufacturers (e.g, Open-
BCI), also produce and sell high-price devices, which we do not take into account, as
they do not allow us a widespread use, due to the high cost, the size and the high number
of electrodes involved. In addition, it is necessary to specify that the discussed devices
follow the placement shown in Fig. 1 but they use fewer electrodes.

Table 1. Widespread Low/Medium-Cost EEG Acquisition Devices

Manufacturer Device name Bits resolution Range (Hz) Electrodes

Emotiv Insight 14 0.50−43 05
Emotiv Epoch X 14/16 0.16−43 14
Emotiv Epoch + 14/16 0.16−43 14
Emotiv Epoch Flex 14 0.20−45 32
InteraXon Muse S 12 0.20−45 04
InteraXon Muse-2 12 0.20−45 04
Neurowsky MindWave Mobile 2 12 3.00−100 01
OpenBCI Cyton Biosensing Board 24 1.00−50 08

Although many devices provide additional sensors besides EEG ones (e.g., Pho-
toplethysmogram, Pulse Oximetry, Gyroscope, Accelerometer, etc.), as they are not
related to the scope of this work, they will not be taken into consideration by us. In
addition to the low cost and ease of use of these devices, one of the most important
aspects for those working in this research area is the growing availability of libraries
for the development of applications based on them, e.g., the framework Brains@play
(https://brainsatplay.com), the Python libraries Brainflow (https://brainflow.org), and
the tools for acquiring, viewing, and recording EEG data Muse LSL (https://github.
com/alexandrebarachant/muse-lsl).

2.2 Biometric Methods

A biometric user identification method has the purpose of comparing the data detected
by one or more biometric sensors to those stored in a database (unique characteristics of
the involved users), using techniques and strategies aimed at reducing the false negatives
and false positives number. A typical EEG data process is carried out through three
distinct steps, in the first of these the raw EEG data are acquired through the adopted
hardware, in the second step the EEG patterns are extracted according to a previously
defined protocol, and these patterns are analyzed in the last step according to a certain
objective. There are several biometric methods and each of them presents advantages
and disadvantages [46].

In recent years, the literature shows a growing interest in biometric approaches
based on EEG data [62]. Some works address the problem on a practical level [53,54,9],
whereas other ones face secondary but equally important aspects such as, for example,

https://brainsatplay.com
https://brainflow.org
https://github.com/alexandrebarachant/muse-lsl
https://github.com/alexandrebarachant/muse-lsl
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the choice of the most suitable evaluation metrics for measuring the performance of
these systems [12], or hybrid techniques that combine EEG with different data to get
better results in the biometric system [50].

In the context of biometric systems designed for user identification based on EEG
data, to obtain univocal EEG patterns stable over time, some literature works propose
approaches based on external user stimulation during the acquisition process of EEG
data, getting interesting results. However, in many cases it is not possible to use these
combined approaches on large-scale applications due to some limitations such as, for
instance, the high cost of the involved hardware and/or the long times required for
the data acquisition [13]. An interesting overview of these systems is provided by the
authors of this work [26], as well as in this one [26] where the EEG data is acquired
during an invisible visual stimulation, or in this other one [1], which proposes a system
for the user identification based only on the Gamma and Beta waves.

2.3 Evoked Potentials

Evoked Potentials (EPs) [57] are defined in the literature in terms of electrical potentials
measurable in areas of the nervous system (primarily in the brain) after the application
of external stimuli. There are different techniques to generate such stimuli, for exam-
ple, the Visual Evoked Potentials (VEPs) that use visual stimuli [7], the Auditory Evoked
Potentials (AEPs) that employ acoustic stimuli [33], and the Vibratory Evoked Poten-
tials [49], where vibrations are used [49]. They have numerous applications in the clin-
ical field, mainly to diagnose neurological disorders, and their intensity is in the order
of microvolts. The generation of stimuli is performed employing different devices such
as, just to give some examples: in the case of VEPs, through a sort of glasses capable of
producing visual stimuli [6]; in the case of AEPs, through the production of sounds at
certain frequencies in a headphon [10]; in the case of the Vibratory Evoked Potentials,
through devices capable of producing vibrations [48]. Although other stimulation ap-
proaches also exist, for the scope of this work we will consider only the widespread and
easy-to-use ones used in the literature (i.e., auditory, visual, and vibratory approaches)
in the period from 2017 to 2022.

2.4 Open Problems

Some problems make it difficult to use EEG for biometric user identification approaches.
The first of these is the complexity of the data at stake as they are composed of very
complex, non-linear, and non-stationary signals [51].

This data scenario forces to use of even very complex approaches to deal with the
problem as, for example, in this work [56], where the authors employ a Stationary
Subspace Analysis (SSA) technique to extract stationary and non-stationary EEG data,
separately. A survey that discusses approaches and challenges related to the EEG data
used in biometric field is provided in [2], and a study aimed at the identification of
the elements able to improve or worsen the performance of these biometric systems is
instead provided in [4].

Another relevant problem that complicates the problem of the non-stationary na-
ture of the data is related to the diversity that characterizes the EEG data of the users
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under equal conditions, making the definition of a common acquisition protocol very
complex [21]. A further complication is given by the fact that system noise is very
loud compared to the EEG signal, making it difficult the exploitation of EEG data in a
reliable way [58].

The needed calibration of the hardware used for the acquisition of EEG data repre-
sents another problem in the biometric identification systems, which should be charac-
terized by quick use. In the literature, this problem is tackled using several approaches
such as, for example, the one based on transfer learning [58] technique, where a model
previously created for an objective is used as the base for the creation of a new model
for another one, effectively reducing the calibration time. In other words, this approach
modifies an evaluation model via prior knowledge, a technique already used in other
scenarios (e.g., positioning systems, image recognition, etc.), which is used to face the
mentioned problem of system calibration.

Another type of problem, which is transversal to this kind of approaches, is the
poor repeatability of the EEG pattern under equal conditions of acquisition [16], a cru-
cial aspect investigated in this study [31], in which the authors demonstrates that in
order to obtain greater stability of the EEG patterns it is necessary to take into ac-
count some emotional states of the users. This is because many factors influence the
EEG data acquisition such as, for example, the movement of the users and their state
of relaxation, factors that make the acquired EEG data different, even with the same
acquisition conditions, and that require the adoption of techniques and strategies to face
the problem [18].

Last but not least, it is the problem related to the number of electrodes necessary for
an optimal acquisition of EEG data, since many works in the literature characterized by
good performance employ acquisition hardware that requires a number of electrodes not
compatible with a large-scale usage of these systems [2,3]. This is a problem discussed
and faced in [23], where the authors use few electrodes while achieving good perfor-
mance, or in this another work [17], where the authors propose a technique capable of
identifying the optimal/minimum number of electrodes to use.

2.5 Evaluation Metrics

According to the literature, the biometric systems performance is primarily assessed
through the False Rejection Rate (FRR) and the False Acceptance Rate (FAR) [8] met-
rics. These two metrics provide the measure of access granted by mistake to unautho-
rized users (FAR), as well as that of access denied to authorized users (FFR). They
are therefore two inversely proportional metrics since as the value of one increases,
that of the other one decreases and vice versa. it should be highlighted that for a user
identification system, a bad FRR value is more tolerable than a FAR one, for obvious
prudential reasons. Other metrics used in this field, which are based on the two previ-
ously mentioned, are the Half Total Error Rate (HT ER = (FAR+FRR)

2 ), and the Equal
Error Rate (EER), which represents the value of HTER when FAR = FRR. The Cor-
rect Recognition Rate (CRR) and the True Acceptance Rate (TAR) are other two metrics
used in some literature works. The first metric gives us a measure of the users identi-
fied correctly with regard to the total of them, whereas the second one is formalized as
TAR = 1−FRR.



EEG combined with EP as Biometric Approach for User Identification 7

3 Research Methodology

We collected the literature works that combine EEG and EP to implement biometric
user recognition approaches according to the following five steps:

1. We extract a first list through Google Scholar (https://scholar.google.it) by using a
series of keywords able to identify only the literature works actually centered on the
type of biometric system we have taken into consideration, i.e., we have defines as
optimal query: allintitle: ("brain waves" | EEG) + (authentication |
biometric) + (stimulation | stimuli | evoked), since it takes into account
the keywords only in the title of the work, excluding, for instance, those cases when
they are present only in the related work. However, at the end of the process, a fur-
ther search was carried out by us without using the allintitle directive to include
other relevant works that do not have our keywords in the title.

2. We applied a filter on the candidate list previously defined, with the aim to keep
only the works related to the period from 2017 to 2022;

3. Another filter was applied by us to remove the less authoritative works, considering
only those indexed on Scopus or/and Web of Science (WOS).

4. The list was further filtered in order to keep only the works based on the com-
bination of EEG data and auditory, visual, or vibratory EP. The criterion adopted
in this work is to consider only EP techniques suitable for use in a biometric user
identification system, thus excluding those that do not satisfy this requirement. This
criterion allows us to provide an exhaustive view of the systems designed for user
identification tasks that are based on approaches that are more suitable for large-
scale use, unlike some works in the literature which are instead characterized by
purely theoretical approaches.

5. In the last step, we removed those works that did not allow us a comparative anal-
ysis, limiting this exclusion only to works that did not allow us such a comparison
in any way, either directly or indirectly.

The results of the previous steps are shown in Table 2, where the selected works are
sorted by date, and each of them has been assigned an identifier (i.e., P01,P02, . . . ,P26)
to provide a quick reference. We can observe that for the year 2022, when we wrote
this work there was only a work in the literature that met the requirements previously
mentioned, and this we believe is probably due to the publication time.

4 Literature Analysis

Premising that to allow the comparison of all the works, when the CRR value is not
provided by the authors, it will be calculated assuming that CRR = 1−EER, on the
basis of their analysis we can perform the following considerations:

- The literature indicates a growing interest over the years in the research sector con-
sidered in this work, and some of these works are approaches of the same authors
improved over the years (e.g., P02, P10, and P13).

https://scholar.google.it
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Table 2. List of papers selected for the survey.

Paper Publisher Year Bibliography

P01 IEEE 2017 [32]
P02 IEEE 2017 [26]
P03 IEEE 2017 [55]

P04 IMR 2018 [24]
P05 IEEE 2018 [61]
P06 IEEE 2018 [11]

P07 MDPI 2019 [64]
P08 IEEE 2019 [35]
P09 IEEE 2019 [44]
P10 IEEE 2019 [27]
P11 IEEE 2019 [66]

P12 FLAIRS 2020 [19]
P13 MDPI 2020 [28]
P14 IEEE 2020 [22]
P15 IEEE 2020 [59]
P16 IEEE 2020 [25]
P17 IEEE 2020 [20]

P18 Springer 2021 [63]
P19 Elsevier 2021 [14]
P20 Elsevier 2021 [65]
P21 IOP 2021 [37]
P22 IEEE 2021 [15]
P23 IEEE 2021 [45]
P24 IEEE 2021 [29]
P25 IEEE 2021 [47]

P26 IEEE 2022 [36]



EEG combined with EP as Biometric Approach for User Identification 9

- The information reported in Table3 shows that many literature approaches do not
employ low/middle-cost EEG devices, adopting instead expensive/professional hard-
ware (i.e., works P01, P04, P07, P09, P11, P12, P17, P19, P20). In addition, the
P06, P08, and P23 work do not specify the hardware being used (this is denoted
with NS).

Table 3. Hardware Employed for the Experiments

Paper Device Channels Sampling rate Resolution (bit)

P01 EB-Neuro Galileo Be Light 19 32 KHz 12
P02 Emotiv Epoch + 14 128 Hz 16
P03 Emotiv Epoch + 14 128 Hz 16
P04 Neuroscan Nuamps 40 1000 Hz 22
P05 Emotiv Epoch + 14 128 Hz 16
P06 NS 8 256 Hz NS
P07 G.Tech g.USBamp 16 2400 Hz 24
P08 NS 6 250 Hz NS
P09 Nicolet EEG Wireless Amplifier 7 12 KHz 24
P10 Emotiv Epoch + 14 128 Hz 16
P11 Neuroscan Synamp2 9 1000 Hz 24
P12 OpenBCI Utracortex Mark IV + Cyton board 8 250 Hz 24
P13 Emotiv Epoch + 14 128 Hz 16
P14 Emotiv Epoch + 14 128 Hz 16
P15 InteraXon Muse 4 500 Hz 12
P16 Emotiv Epoch + 14 128 Hz 16
P17 Neuroscan Synamp2 9 1000 Hz 24
P18 Emotiv Epoch + 14 128 Hz 16
P19 Brain Products actiCHamp 64 500 Hz 24
P20 Neuroscan Synamp2 9 1000 Hz 24
P21 Emotiv Epoch + 14 128 Hz 16
P22 Emotiv Epoch + 14 128 Hz 16
P23 NS 7 12 KHz NS
P24 Emotiv Epoch + 14 256 Hz 16
P25 Emotiv Epoch + 14 256 Hz 16
P26 Emotiv Epoch + 14 256 Hz 16

- Despite these cases, the literature shows that it is still possible to achieve design
effective EEG-based approaches even using low/middle-cost devices, according to
the usage percentage shown in Table 4.

- Another consideration should be made about the experimental requirements for
some approaches, which appear incompatible for large-scale user identification sys-
tems (e.g., long times required to acquire data), providing only a theoretical contri-
bution.

- Some literature works taken into account (i.e., P11, P15, P16, and P20) appear to
be infallible, with CRR=100% or with an error rate equal to zero, so as reported
in Table 5. Unfortunately, this does not only depend on the effectiveness of the
proposed approach but also on the not optimal validation process that, for instance,
involves a low number of users, preventing the generalization of the reached perfor-
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Table 4. Hardware Distribution

Hardware Number Usage (%)

Emotiv Epoch+ 13 50.00
Neuroscan Synamp2 03 11.52
Not Specified 03 11.52
OpenBCI Utracortex Mark IV + Cyton board 01 03.85
EB-Neuro Galileo Be Light 01 03.85
G.Tech g.USBamp 01 03.85
InteraXon Muse 01 03.85
Neuroscan Nuamps 01 03.85
Nicolet EEG Wireless Amplifier 01 03.85
Brain Products actiCHamp 01 03.85

mance. In this regard, only four of all the considered literature works employ more
than twenty-five users and, in any case, none of them employ more than thirty-one
users.

- The analysis of the literature approaches also show that there is no direct correlation
between the approach performance and the adopted technique of stimulation, as
this mainly depends on the technique/strategy with which the biometric system
was designed.

- Because the number of users involved in the validation process of the works taken
into consideration is different, we thought it appropriate to evaluate the approach
performance (AP) according to the weighted criterion shown in Equation 1, where
the CRR performance of a paper p ∈ P is denoted as CRRp, and the involved users
are denoted as |U |p.

AP =

P
∑

p=1
(CRRp · |U |p)

P
∑

p=1
|U |p

(1)

- Based on the AP metric previously formalized, we calculated the best average per-
formance related to the different types of stimulus, obtaining for the approaches
that use visual stimuli a value of 96.72% (16 works, not considering P22 since its
aim was not to get the best CRR performance but a study aimed at investigating the
performance of each single EEG channel), whereas for the those that use auditory
stimuli a value of 97.45% (7 works), and for those that use vibration stimuli a value
of 82.50% (2 works).

4.1 Data Acquisition Protocols

The data acquisition protocols deserve a separate discussion, since the reliability of the
experimental results depends on them. In this regard, the works in the literature appear
very heterogeneous since each work is characterized by different parameters as regards
crucial elements such as, for instance, the acquisition sessions and the users involved,
as well as regarding the duration and the break between sessions. A significant example
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of this high degree of heterogeneity is given by the number of users involved (one of the
most important parameters), considering that some works involve only four users [55],
whereas in other ones thirty-one users [61], with an average number of users for all
works of fifteen. In addition, only some authors underline the limitation given by the
low number of users involved in the experiments, proposing to increase them in future
works [29,47] For the above reasons, in Table 5 we carried out a comparison of all the
works on the basis of the main experimental parameters used by the authors.

Table 5. Experimental environment, performance, and parameters.

Paper Stimulus
Max Total Total Session duration Average session
CRR subjects sessions and repetitions time interval

P01 Visual 96.00 25 02 N.A. 15 days
P02 Visual 77.00 20 10 6 s - 55 times 2 sessions per day
P03 Visual 87.50 04 10 17 s - 20 times N.A.
P04 Visual 82.30 10 06 1.25 s - 370 times 1 week
P05 Visual 98.00 31 03 10 s - 25 times 3 sessions per day
P06 Visual 96.80 10 03 N.A. 3 and 6 weeks
P07 Visual 94.26 15 02 3 s - 200 times 30 days
P08 Visual 91.44 20 02 10.3 s - 5 times N.A.
P09 Visual 97.18 21 02 360 s total 30 days
P10 Auditory 95.60 10 10 360 s total N.A.
P11 Visual 100.00 25 02 2 s - 100 times between 1 to 103 days
P12 Auditory 96.75 16 03 310 s total 1 week
P13 Auditory 95.60 10 04 300 s total N.A.
P14 Visual 91.90 20 10 1 s - 55 times N.A.
P15 Visual 100.00 05 05 60 s total N.A.
P16 Auditory 100.00 10 08 30 s total N.A.
P17 Visual 92.50 20 20 3 s - 53 times N.A.
P18 Auditory 99.06 08 02 2 s - 120 times 2 sessions per day
P19 Auditory 99.53 20 04 90 s - 4 times N.A.
P20 Visual 100.00 21 02 66.15 s total 5 days
P21 Visual 92.80 13 07 720 s total 7 consecutive sessions
P22 Visual 29.69 21 03 N.A. 7 days
P23 Auditory 95.00 13 03 300 s total the last one after one year
P24 Vibration 89.00 10 10 5.1 s - 100 times N.A.
P25 Vibration 76.00 10 10 5.1 s - 100 times N.A.
P26 Visual 93.80 08 08 Several values N.A.

Moreover, Table 5 shows also the heterogeneity of parameters, with few data acqui-
sition sessions close to each other in some works ([55,61,28,59]), or a more significant
number of sessions without any distance in time ([27,37]), or even very spaced out in
time ([66,19,45]). There are also differences according to the type of stimulus used, as
those based on visual stimulation have a high number of trials and a short overall du-
ration, unlike those based on auditory stimulation, which instead have fewer but longer
trials, whereas, in the two approaches that exploit the vibration stimuli, we have a short
time of acquisition with short pauses.
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4.2 Limitations

What was previously discussed in Section 2.4 regarding some well-known limitations
affecting this research field, together with the analysis of the literature of the considered
period, underline three main problems:

i) the first problem refers to the type of data (complex, non-stationary, and non-linear),
which makes it difficult to obtain stable EEG patterns over time, a stability nec-
essary for a biometric user identification system. This is a problem faced in the
literature in different ways and which seems to be able to be effectively countered
through the use of EP techniques, as they can create the conditions to ensure greater
repeatability of the patterns compared to the EEG data acquisition carried out with-
out any stimulus [24]. Although of great importance, the problem of the stability of
EEG patterns has been considered only in some of the works discussed by us (e.g.,
[61,11]);

ii) the second problem is instead given by the diversity of users despite using the same
data acquisition protocol, a transversal aspect that strongly limits the definition
of a common evaluation model, a problem that requires even very sophisticated
approaches to be reduced;

iii) another problem concerns the hardware calibration required by many biometric
approaches in the literature, which is not compatible in terms of time with a large-
scale use, differently from other biometric systems (e.g., those based on recognition
speech or fingerprints), and this is further complicated by those approaches that
require many electrodes and/or a conductive paste for their application;

iv) a last problem that somehow involves all the previous ones is the heterogeneity of
the experimental environments related to the works in the literature, as they differ,
often in a very marked way, in terms of software, hardware, system configuration,
number of users, sessions and acquisition times, as well as other minor parameters,
thus making it difficult for those working in this research sector to take stock of the
situation.

5 Conclusions

The literature works have shown the possibility of realizing biometric systems for the
users’ identification based on EEG data influenced by external stimuli (EP), although it
must be noted that among all the proposed solutions very few are suitable for large-scale
use as a biometric system for the users’ identification due to some intrinsic limitations.
In any case, we have to take into account that this is a relatively new research area,
although very promising as the literature shows a growing interest that bodes well for
the future.

The intrinsic limitations are mainly attributable to the data acquisition protocols
that are often incompatible with practical use in real-world biometric applications, as
well as the difficulty to get the same performance measured during the experimental
phase, varying the environment and/or the users. Each work in the literature, regardless
of its theoretical or practical approach, represents a step forward toward the definition
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of reliable biometric systems to be used on a large scale, also by considering the con-
tinuous evolution of EEG devices and data analysis techniques. In addition, some of
the approaches discussed in this work, although they present limitations, could be ex-
ploited to design hybrid biometric approaches to improve the effectiveness of the user
identification process [30].

Unlike other works in the literature, the present work is focused on a precise sub-
area where EEG and EP are combined to face some well-known problems (mainly that
of EEG pattern instability). To our best knowledge, it is a sub-area that has never been
considered alone in the literature but only in a more dispersed way. For this reason, the
exhaustive and targeted analysis provided in this work can offer valuable information
for those who work in this research field.

An extension of this work was carried out by us after the writing of this work in or-
der to deepen all the concepts briefly exposed here due to issues of available space [40].
A next work (theoretically formalized in [38]) will be to design a biometric approach
aimed to perform user identification tasks by adopting only low-cost EEG and EP de-
vices, focusing our attention on the definition of a system suitable for large-scale use,
therefore taking into account not only the cost of the hardware but also other charac-
teristics (e.g., required electrodes, ease of use, acquisition time, etc.). In this regard, we
would also like to experiment with techniques/strategies already used with interesting
outcomes in other domains [42,41,5,39,43].
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