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Abstract
The credit scoringmodels are aimed to assess the capability of refunding a loan by assessing user reliability in several financial
contexts, representing a crucial instrument for a large number of financial operators such as banks. Literature solutions offer
many approaches designed to evaluate users’ reliability on the basis of information about them, but they share some well-
known problems that reduce their performance, such as data imbalance and heterogeneity. In order to face these problems,
this paper introduces an ensemble stochastic criterion that operates in a discretized feature space, extended with some meta-
features in order to perform efficient credit scoring. Such an approach uses several classification algorithms in such a way that
the final classification is obtained by a stochastic criterion applied to a new feature space, obtained by a twofold preprocessing
technique. We validated the proposed approach by using real-world datasets with different data imbalance configurations,
and the obtained results show that it outperforms some state-of-the-art solutions.

Keywords Credit scoring · Stochastic processes · Ensemble learning · Machine learning · Transformed feature space ·
Discretization · Meta-features · Heterogeneity · Algorithms

1 Introduction

The significant increase in requests related to consumer
credit has made it impossible for credit institutions to use
manual approaches to assess the solvency of applicants.
Credit Scoring systems [50] are therefore computer-aided
statistical approaches proposed to deal with this issue. Such
models evaluate the probability that a new instance (i.e., a
potential client) is considered reliable (non-default) or unre-
liable (default), by searching for similarities of that instance
with clustered samples that the system learned with previ-
ous labeled data. For this reason, credit scoring approaches
through machine learning techniques represent the only pos-
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sible solution nowadays, as they carry out this operation
efficiently without any human supervision [61]. Thus, such
credit scoring systems offer a great opportunity to financial
operators, since they allow the evaluation of a huge number
of requests.

To further highlight the importance of efficient credit scor-
ingmodels, we show in Figs. 1 and 2 a study about consumer
credit and spending in the Eurozone made by Trading Eco-
nomics1, which is based on the information provided by the
European Central Bank2. It shows that the consumer loan
increment follows the spending (all data are expressed in
billions of euros); therefore, it clearly underlines how such
requests boosted dramatically over the last years, with this
trend being similar to that registered in other world zones
such as the USA and Russia. An effective credit scoring
approach must, therefore, evaluate accurately the probabil-
ity that a user will not (fully or partially) repay a loan, and
this type of information is used in order to decide whether
to grant or refuse a requested credit, minimizing income
losses to the financial operators. The effectiveness of such
models is particularly important specially at times of crisis,

1 https://tradingeconomics.com/euro-area/.
2 https://www.ecb.europa.eu.
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Fig. 1 Consumer credit in the Eurozone (in billions of Euros)
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Fig. 2 Consumer spending in the Eurozone (in billions of Euros)

such as when natural disasters and epidemics happen and the
market becomes challenging by nature. Notwithstanding, it
should be observed how the performance of these techniques
is directly affected by misclassification errors [8].

The definition of an evaluation model able to perform
effective users rating or classification is not an easy task for
a series of limitations, such as the data heterogeneity [16],
characterized by the information in credit scoring datasets
with different semantics and range of values, making it diffi-
cult to use themas features to perform credit scoring.Another
common issue, considered the most important in credit scor-
ing datasets, is the data imbalance [10,41]. This means that
the available data about users (from now on denoted as
instances) are composed of a few examples of unreliable
cases when compared with the reliable ones, preventing the
definition of effective evaluation of credit scoring models.

In this paper, we present a credit scoring model that
increases credit scoringperformanceby tackling these above-
mentioned limitations in two distinct, but complementary

manners: (1) efficient data preprocessing and (2) ensemble
of machine learning approaches ruled by a stochastic crite-
rion. As first step, our proposal transforms the feature space
through complementary two steps of features discretization
and enrichment. The discretization process scales the fea-
tures, allowing us to reduce data heterogeneity by merging
similar patterns. In addition, the enrichment process reduces
the loss of information from the previous step by calculating
additional meta-information to improve the different char-
acterizations of reliable and unreliable cases. Additionally,
such a transformed feature space is used in the context of an
ensemble of classifiers, ruled by a stochastic criterion that
minimizes reliable samples misclassification and maximizes
unreliable samples classification at the same time, tackling
in this way the data imbalance problem. In order to avoid
over-fitting issues [37] in our experiments, we evaluate the
proposed approach by firstly performing a twofold strategy
of data splitting. In more detail, we divide the datasets into
an in-sample part, which is used for training of the evaluation
model, and an out-of-sample part, used for final performance
evaluation through the k-fold cross-validation criterion. We
justify such an experimental procedure because the canon-
ical k-fold cross-validation criterion for this problem does
not allow us obtaining a real separation between the data
used to train and assess the evaluation model performance.
Such a criterion has been largely used in other domains, such
as, for instance, financial market forecasting [38]. In both
applications, it is crucial to assess the real effectiveness of a
prediction model on data never seen before.

In summary, the main scientific contributions related to
this paper are the following:

– exploitation of a data preprocessing approach aimed to
improve the performance of the proposed ensemble clas-
sifier;

– definition of an ensemble of classifiers ruled by a stochas-
tic criterion and trained in a transformed feature space;

– validation of the proposed approach made by using
both the in-sample/out-of-sample and the k-fold cross-
validation criteria.

The remaining of this paper is organized as follows: We
discuss the related work and challenges of this research in
Sect. 2. In Sect. 3, we present our proposed approach. Sec-
tion 4 reports the experimental configuration and results, and
finally, Sect. 5 concludes this work and points out future
research directions where we are headed to.

2 Related work

The literature presents three different credit scoring models
[24] regarding the concept of non-reliable, or default cases:
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(1) Probability of Default, which evaluates the likelihood of
a default over a specific time period; (2) Exposure at Default,
which evaluates the financial exposure of an investor when
a loan defaults; and (3) Loss Given Default, which evaluates
the loss ofmoney of a financial operatorwhen a loan defaults.
For the purposes of this paper, we consider only the Proba-
bility of Default model, which we implement according to a
binary classification criterion (i.e., by classifying each new
instance as reliable or unreliable). Different approaches and
strategies have been exploited in order to define effective
credit scoring approaches. We discuss the most important
ones in the following paragraphs.

The first branch of techniques treats the credit scoring
problem as a data analysis or data transformation problem,
discriminating reliable and unreliable samples by investigat-
ing data disturbance or analyzing new transformed spaces.
The work of Carta et al. [13,54] followed that direction by
investigating data entropy before and after an unknown sam-
ple is inserted in a dataset in order to measure how it is
affected, with this information being helpful to detect default
(or unreliable) cases. Fan et al. [30] also exploited the entropy
criterion in order to face the issues related to imbalanced
datasets. Saia and Carta [56] compared features magnitudes
in the Fourier space in a test sample and all samples from
a dataset. Saia et al. [57] analyzed the cosine, features and
magnitudes similarities in the Wavelet transform. Similarly,
Jaber et al. [39] proposed awavelet-inspired analysis in order
to convert the original data into a time-scale domain.

Another branch of credit scoring techniques, which is
more related to our present work, considers machine learn-
ing classifiers in the credit scoring pipeline. For example,
Chen et al. [19] used the support vector machine (SVM)
classifier in order to define a new scoring process, based on
historical data on a proprietary dataset. The work of Fan et
al. [29] considered the same SVM classifier for this task,
but optimized by an adaptive mutation partial swarm algo-
rithm. Li et al. [44] considered two scenarios to perform
credit scoring using a Bayesian optimal filter and a recur-
sive Bayes estimator, whereas Chen et al. [18] proposed an
advanced Bayesian algorithm for credit assessment. Zhang et
al. [68] defined a novel random forests (RFs)-based classifier
for credit scoring, using feature selection through informa-
tion entropy and grid search. Damrongsakmethee et al. [25]
presented a feature selection approach, combining principal
component analysis and the ReliefF algorithm, using pre-
processed data through these techniques in a decision tree
classifier. Arora andKaur [4] introduced theBootstrap-Lasso
feature selection algorithm, which selects consistent and rel-
evant features from a pool of features. Such an approach is
then validated in classification algorithms like random forest,
support vector machines, Naive Bayes and K-nearest neigh-
bors.

Other works have considered more efficient machine
learning solutions, such as neural networks, to perform credit
scoring. Chen et al. [21] presented the use of the DeepGBM
network, which deals with sparse categorical features and
dense numerical features at the same time. Changjian and
Peng [15] used an improvedElmanneural network to perform
credit scoring with particle swarm optimization to initialize
network weights. Wang et al. [63] considered long short-
term memory neural networks with an attention mechanism
to perform peer-to-peer credit scoring. Fonseca et al. [32]
used a two-stage process, involving a fuzzy inference model
as input for an artificial neural network. Babaev et al. [5]
used a recurrent neural network in the pipeline, treating the
credit scoring task as a text classification task.

Machine learning techniques can also be combined in
order to build hybrid approaches of credit scoring decision
support systems as, for instance, the one presented by Feng
et al. [64], which exploits a two-stage hybridmodel with arti-
ficial neural networks and a multivariate adaptive regression
splinesmodel. Another kind of classifiers combination, com-
monly known as ensembles [27], has also been extensively
studied in the literature. Thework of Lopez et al. [48] used an
ensemble of several classifiers, including SVMs and logistic
regression, in order to validate a feature selection strategy
called group penalty function, which penalizes the use of
variables from the same source of information in the final
features. The work of Zhang et al. [67] ensembles five clas-
sifiers (logistic regression, support vector machine, neural
network, gradient boosting decision tree and random forest)
using a genetic algorithm and fuzzy assignment. In the work
of Feng et al. [31], a set of classifiers are joined in an ensem-
ble according to their soft probabilities. Finally, Tripathi et
al. [62] proposed a model based on dimensionality reduction
and layered ensemble classification with weighted voting on
the best five out of seven classification algorithms. Pławiak et
al. [52] exploited a novel deep genetic cascade ensemble of
SVM classifiers to perform credit scoring. The work of Abel-
lan and Castellano [2] presented the findings of a very deep
comparative work on ensembling machine learning models
for credit scoring. Among their conclusions, they found out
that, when employing decision trees as base classifiers, the
ensemble schemes have shown to performbetter, even though
such a classifier does not obtain good results individually.

In addition, the literature offers other hybrid approaches,
where different techniques/strategies (e.g., data optimization
techniques, genetic algorithms, fuzzy logic, etc.) have been
combined in order to improve the credit scoring performance.
Some representative examples are the work of Santana et
al. [59], where the authors combine fuzzy logic, neural net-
works and a variable population optimization technique, to
obtain fuzzy classification rules, and another work from the
same authors [40], where they define amethod able to reduce
the number of classification rules involved in the definition
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of the credit scoring predictive model, reducing the system
decision time. Other representative works are that of Carta
et al. [12], where the authors adopt a two-step feature space
transformingmethod,with the aim to improve the credit scor-
ing performance, or the work of Zhang et al. [69], where the
authors propose a novel sparse multi-criteria optimization
classifier based on one-norm regularization, linear and non-
linear programming, for the credit risk evaluation.

Another interesting category of approaches is those
that exploit, alone or in combination with other methods,
the Auto-Regressive Integrated Moving Average (ARIMA)
model, which is largely used in many contexts (e.g., in the
e-commerce price forecasting one, as in the work of Carta et
al. [14], or in the time series forecasting one, as in the work
of Domingos et al. [28]), in order to perform credit scoring
tasks. An example can be found in the work of Jaber et al.
[39], where this statistical model has been combined with
wavelet functions.

It shouldbeobserved thatmost of the presented approaches
share some well-known problems that reduce their effec-
tiveness in the credit scoring domain. Two important issues
commonly found in credit scoring datasets are: (1) Class
Imbalance, given by the strong difference in the number
of samples related to the reliable and unreliable cases [11].
Such a limitation reduces the effectiveness of the classifica-
tion approaches, since they should have a balanced number
of samples in order to define a reliable classification model
[17], and (2) Data Heterogeneity, given by the same infor-
mation being represented differently in the datasets [16].
Our approach, which will be presented later in this paper,
deals with both problems by transforming data and applying
stochastic ensemble decisions, maximizing ensemble perfor-
mance even in an imbalanced scenario.

2.1 Data preprocessing

About discretization approaches, on which part of our pro-
posed approach is based, the literature usually treats them as
a preprocessing strategy, aimed to improve the classification
algorithms performance. Such technique has been discussed
in depth byKotsiantis et al. [42] in their survey,whereas some
of its recent developments are taken into account in the work
of Börner et al. [42]. It works by transforming the feature
values from their original quantitative form into a qualitative
form, dividing each value according to a discrete number
of non-overlapped intervals. In other words, each original
continuous or discrete number is mapped into one of such
intervals, by following different criteria. For instance, De Sá
et al. [26] use an entropy-based discretization approach to
perform this operation, whereas Sharmin et al. [60] propose
an approach based on mutual information.

Regardless the adopted discretization criterion, in addition
to the improvement in performance that is usually achieved,

this process presents further advantages, such as reduction
of data dimensionality that produces a faster and accurate
learning, as discussed by García et al. [33] in the context
of big data. Another advantage is related to the better data
understandability reached through the discretization process,
as discussed in the Luengo et al. [47] work. The main dis-
advantage of a discretization process is related to the loss of
information that it yields, since an ideal data discretization
represents an NP-complete3 problem.

The addition of meta-features is also exploited in our
proposed approach, which the literature classifies as a data
enrichment technique. This process, aimed to improve the
original data domain by adding additional information, has
been discussed by Bilalli et al. [9], which is focused on
the predictive power of meta-features. The definition of the
meta-features is performed by following several and different
criteria, such as, for instance, calculating them on the basis of
a metric in the context of each single instance of the dataset,
or by taking into account the entire dataset.As detailed during
the description of the proposed approach, such a technique
will be used in order tomitigate the loss of information related
to the discretization process we performed.

2.2 Evaluationmetrics

The literature indicates several types of metrics able to assess
the performance of the credit scoring approaches/strategies.
Chen et al. [20] discuss them in this domain, as well as Zou et
al. [70], which focused this evaluation in the context of the
classification with an imbalanced class distribution, which
usually characterizes the credit scoring scenario.

There are metrics based on the confusion matrix [65],
which is a 2×2 matrix that contains the total number of
True Negatives (TN), False Negatives (FN), True Positives
(TP), and False Positive (FP) as shown in Table 1, where
the matrix is contextualized in the credit scoring scenario.
Some examples of confusion-matrix-based metrics are the
Accuracy = T P+T N

T P+T N+FP+FN , the Sensi tivi t y = T P
T P+FN ,

the Speci f ici t y = T N
T N+FP and the Fallout = FP

FP+T N .
Other metrics widely used in this domain are those based on
the the receiver operating characteristic (ROC) curve, such as
the area under the ROC curve (AUROC) [2]. The ROC curve
plots the Sensitivity against the Fallout, placing the former
on the y-axis and the latter on the x-axis. The ROC is a prob-
ability curve, and the AUROC (the area under this curve)
gives us information about the capability (separability mea-
sure) of a binary classifier to discriminate the two different
classes of information (in our context, reliable and unreli-
able), correctly. The confusion-matrix-based metrics and the

3 According to the computational complexity theory, a NP-complete
problem occurs when its solution needs a restricted class of brute force
search algorithms, where NP stands for non-deterministic polynomial.
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Table 1 Confusion matrix

Performed classification
Reliable Unreliable

Real class Reliable TP FN

Unreliable FP TN

ROC-based ones are often combined in order to provide a
more reliable evaluation of the credit scoring performance.

3 Proposedmethod

Before discussing our approach, we introduce the adopted
formal notation. Given I = {i1, i2, . . . , iX } a set of classi-
fied instances, I+ = {i+1 , i+2 , . . . , i+Y } a subset of reliable
instances with I+ ⊆ I , I− = {i−1 , i−2 , . . . , i−W } a subset

of unreliable instances with I− ⊆ I , Î = {î1, î2, . . . , î Z }
a set of unclassified instances, F = { f1, f2, . . . , fN } a
set of instance features, C = {reliable, unreliable} a set
of instance classifications, A = {a1, a2, . . . , aZ } a set of
classification algorithms and P = {p1, p2, . . . , pZ } the pre-
dictions for a generic ai ∈ A with Z = |P| = |A| (i.e., the
number of predictors used), the problem faced in this paper
is formalized in Eq. 1 as follows:

max
0≤�≤| Î |

� =
| Î |∑

j=1

eval(î j , I ), (1)

where the classification of each î instance is performed by
using the eval(î, I ) function on the basis of the informa-
tion in the set I , which gives as output a β binary value
(0=misclassification, 1=correct classification).

Our objective is therefore maximizing �, since it repre-
sents the sum of the correct classifications. According to the
high-level architecture of Fig. 3, the proposed approach has
been implemented through the steps described in the follow-
ing subsections.

3.1 Step #1: feature space transform.

Each feature f ∈ F that composes the sets I and Î , being
continuous or discrete, is discretized in the first step of our
approach. In more detail, their original values have been
mapped into a discrete range of values {0, 1, . . . , Δ} ∈ Z,
according to a Δ parameter found through experiments
(which will be described later in Sect. 4 of this paper).

More formally, denoting f
Δ−→ d the discretization pro-

cess, we map each single feature value f ∈ F into one of
the discrete integer values in {d1, d2, . . . , dΔ}. Such a pro-
cess leads toward a reduction of instance patterns, merging
similar patterns as formalized in Eq. 2 as follows.

Fig. 3 High-level architecture
of our proposed approach

Feature
Space

Transform

Stochastic
Ensemble
Model

Classification

îI Δ

classified i instance

{ f1, f2, . . . , fN } Δ−→ {d1, d2, . . . , dN }, ∀ i ∈ I

{ f1, f2, . . . , fN } Δ−→ {d1, d2, . . . , dN }, ∀ î ∈ Î
. (2)

Subsequently, we process each discretized vector of fea-
tures {d1, d2, . . . , dΔ} in the sets I and Î by adding a series
of meta-features μ. Such meta-features have been calcu-
lated in the new discretized space, and they are the minimum
(m), maximum (M), average (A) and the standard deviation
(S). The result of such operations is four new features for
each vector (i.e., μ = {m, M, A, S}), which face through an
improved characterization of each instance the loss of infor-
mation related to the previous discretization process. The
new meta-features are calculated as shown in Eq. 3.

μ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m = min(d1, d2, . . . , dN )

M = max(d1, d2, . . . , dN )

A = 1

N

∑N
n=1(dn)

S =
√

1
N−1

∑N
n=1(dn − d̄)2

(3)

The new feature space φ represents the transformation
of the original feature space according to a Δ value of dis-
cretization, which has been followed by adding four new
meta-features μ = {m, M, A, S}. To simplify, we show in
Eq. 4 such an operation only in the set I (which is the same
for the set Î ).

φ(I ) =

⎛

⎜⎜⎜⎜⎜⎜⎝

d1,1 d1,2 . . . d1,N m1,N+1 M1,N+2 A1,N+3 S1,N+4

d2,1 d2,2 . . . d2,N m2,N+1 M2,N+2 A2,N+3 S2,N+4

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

dX ,1 dX ,2 . . . dX ,N mX ,N+1 MX ,N+2 AX ,N+3 SX ,N+4

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(4)
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With such steps of data transform, we tackle data hetero-
geneity present in credit scoring datasets, putting different
users information in the same transformed feature space.

3.2 Step #2: Stochastic ensemblemodel.

As discussed in the previous section, ensemble machine
learning methods were largely been used in the literature,
with the aim to improve single classifiers performance.
Ensemblingmachine learning algorithmsmeans that, instead
of using a single classification algorithm, several algorithms
are taken into account to classify an event, and such a classifi-
cation depends on all the single results according to a certain
criterion (e.g., full agreement, majority voting, weighted
voting, among others). Although an ensemble method com-
monly improves the single used algorithms, it should be
observed how this could be not true in certain cases [34].
An ensemble configuration can use a dependent or indepen-
dent model [53]. In the first case, the result of an algorithm
depends on the result of the others, whereas, in the second
case, the result of an algorithm is independent of the results
of the others. The approach proposed in this paper is an inde-
pendent ensemble model.

The stochastic model that we used to drive the ensemble
approach classification relies on probabilities models, since
such models are able to evaluate a binary response given by
a series of independent predictors in terms of probability.
In more detail, we use these models in order to assess the
probability (or confidence) that an instance î ∈ Î belongs
to one of the classes in C , by mapping the related probabil-
ities through a sigmoid σ function4. This function is largely
used in machine learning to connect predictions to probabil-
ities, mapping any real value into a binary value [0,1]. More
formally, Eq. 5 shows this process

σ(az(p)) = 1

1 + e−p
, (5)

where the probability estimated for a prediction p, performed
byusing amachine learning algorithmaz and expressed in the
range [0, 1] is denoted by σ(az(p)), and e represents the base
of natural log. Such a probability can be calculated, in the
credit scoring context, for both reliable (σr ) and unreliable
(σu classes), where σr = 1 − σu .

On the basis of Eq. 5, our proposed ensemble model
operates by excluding from the decision process the algo-
rithms that make predictions with a low level of probability,
performing the ensemble classification on the basis of the
predictions from stronger algorithms, according to the fol-
lowing weighted probabilistic criterion.

4 A mathematical function has a characteristic sigmoid curve.

σr = 1
Z ·

Z∑
z=1

σr (az(p))

w1 = w1 + 1 i f σr (az(p)) > σr ∧ az(p) = reliable

w2 = w2 + 1 i f σr (az(p)) < σr ∨ az(p) = unreliable

c(î) =
{
reliable, if w1 > w2

unreliable, otherwise.

(6)

The first step of the proposed stochastic ensemble approach
is, therefore, defining what is a low level of probabilities.
The approach does this sample-wise, by calculating themean
probability σr that a given test sample is classified as reliable
in a set of classifiers in the ensemble Z . Then, the approach
startsweighting the classes in order to avoidmisclassification
of reliable samples (the class more frequent in credit scoring
datasets) and, at the same time, maximizing the classification
of the less frequent classes (unreliable samples).

To perform such a task, the proposed ensemble criterion
requires the comparison of two variables w1 and w2, as
detailed in Eq. 6. Both variables are initialized to zero and are
updated for each sample depending on the classification of
that sample for the different classifiers of the ensemble. The
first assumption, denoted as w1, is activated when a clas-
sifier confidence that the sample is reliable is higher than
the mean confidence σr considering all the classifiers in that
ensemble. As in credit scoring datasets the reliable samples
are more present, we need a strong confidence to activate
such assumption as classifiers had more data to train for that
particular class. Therefore, w1 is considered our first step to
tackle data imbalance, which is stating that most of classi-
fiers in an ensemble need higher confidence on classifying
the more frequent samples. Such requirement reduces mis-
classifications for that particular class.

The second assumption of our stochastic ensemble crite-
rion, denoted as w2, deals with unreliable samples and states
that the classifier decision of unreliable is always respected,
no matter how high σu is. Additionally, w2 is activated if
w1 assumption is false. Therefore, the second step in dealing
with data imbalance is respecting the classification of unre-
liable samples and being more rigorous regarding reliable
samples classification (w1), increasing therefore the clas-
sification of unreliable samples. In the end, our approach
compares the sum of activations ofw1 andw2 to make a final
decision, dealing with data imbalance issues in the ensemble
criterion itself, not working with the data directly.

3.3 Step #3: classification.

The new feature space and the stochastic model previously
formalized have been used in the context of classification in
Algorithm 1, with the aim to classify each instance î ∈ Î .
It takes as input the set of classification algorithms Z , the
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set of classified instances I and the instance to evaluate î ,
returning as output the classification (reliable or unreliable)
of the instance î . The algorithm starts by discretizing and
enriching features in lines 4 and 5, respectively. Then, the
training of the models of the ensemble in the transformed
space is started in line 6, and the testing of an unevaluated
(testing) sample is done in line 7. Line 8 of the algorithm
calculates the mean probability of reliable in all the models,
and lines 9-15 calculate the stochastic ensemble result for
each class according to Eq. 6 requirements. Finally, lines
16-21 work by checking the class with highest weight, and
finally, the final classification for that sample is returned.

Algorithm 1 Instance classification
Require: Z=Ensemble algorithms set, I=Classified instances set, î=Unevaluated

instance
Ensure: c=Classification of the î instance
1: procedure Classification(A, I , î)
2: w1 ← 0
3: w2 ← 0
4: I ← getT rans f ormedFeatureSpace(I )
5: î ← getT rans f ormedFeatureSpace(î)
6: models = trainModels(Z , I )
7: predictions = get Predictions(models, î)
8: σ ← getMeanPredictionsProbabili t y(predictions)
9: for each p in predictions do
10: if get Probabili t y(p) > σ ∧ p == reliable then
11: w1 ← w1 + 1
12: else
13: w2 ← w2 + 1
14: end if
15: end for
16: if w1 > w2 then
17: c ← reliable
18: else
19: c ← unreliable
20: end if
21: return c
22: end procedure

3.3.1 Computational complexity analysis

Without claiming to carry out an exhaustive and detailed
analysis of the computational complexity of the proposed
Algorithm 1, in this section we provide some indication with
regard to its complexity in the context of the most used state-
of-the-art algorithms and available real-world datasets in this
domain.

It has been performed by analyzing the theoretical com-
plexity (adopting the Big O notation [22], which defines
the algorithm upper bound, bounding its complexity only
from above) of the instance classification and the data fea-
tures transformation we applied, without taking into account
aspects such as the number of features, the number of algo-
rithms and their different complexities during the training
phase, considering in these contexts O(n) as worst case,
according to the most common algorithms and datasets sce-
narios in the credit scoring literature.

In light of the above, generalizing the total number of
instances to process as n, we can made the following consid-
eration about the algorithm Big O complexity:

– The steps 2 and 3 refer to two operations of assignment
performed in constant time, and the final complexity is
then O(1);

– the steps 4 and 5 are related to the proposed data trans-
formation (i.e., discretization andmeta-features addition)
that are applied, respectively, on each instance of the
dataset I and an unevaluated instance î . These opera-
tions have a required running time that increases linearly
with the number of instances, which in the worst case
leads to a O(n) complexity;

– the steps 6 and 7 refer to the training and classification
phases of the five machine learning algorithms that com-
pose the ensemble, whose complexity in the worst case
is O(n);

– the step 8 performs a mean value calculation in a time
that increases linearly with the number of instances, then
with an O(n) complexity;

– the steps 9 to 15 classify the î instance on the basis of the
ensemble algorithms predictions, involving only com-
parison and assignment operations, since the prediction
probability information (step 10) is obtained at step 7,
and then, the worst-case complexity is O(1);

– the steps from 16 to 21 are related to an if-statement and
the return of the algorithm, both characterized by anO(1)
complexity, and then, the final complexity is O(1) ;

– on the basis of the aforementioned considerations, made
according to the Big O notation that defines the upper
bound complexity, the complexity related to Algorithm 1
is O(n).

It should be observed that the computational load of
the proposed Algorithm 1 can be tackled and reduced by
parallelizing the process by using large-scale distributed
computingmodels, such as, for instance, theHadoopMapRe-
duce [36] or the Apache Spark [49] frameworks.

4 Experiments

In this section, we evaluate the benefits of our proposed
approach in an experimental scenario that involves the use
of real-world data. For that, we start firstly describing the
experimental setup we use and then we report results in the
two following subsections.

Considering that the proposed approach is based on the
preliminary transformation of the feature space, and subse-
quently on the exploitation of an ensemble of algorithms for
the classification task, we validate it using as competitors
the most widespread and effective state-of-the-art baseline
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Table 2 Datasets characteristics

Dataset Total Reliable Unreliable Feature
name instances instances instances number

AC 690 307 383 15

GC 1,000 700 300 21

DC 30,000 23,364 6,636 24

Table 3 AC dataset features

Feature Feature

01 Categorical feature 08 Categorical feature

02 Continuous feature 09 Categorical feature

03 Continuous feature 10 Continuous feature

04 Categorical feature 11 Categorical feature

05 Categorical feature 12 Categorical feature

06 Categorical feature 13 Continuous feature

07 Continuous feature 14 Continuous feature

algorithms used in this domain, both in single and in ensem-
ble configuration. This choice derives from the consideration
that the benefits measured in this context will be alsomeasur-
able in the context of other more sophisticated and complex
approaches that include such algorithms.

4.1 Experimental setup

We now focus our attention on explaining the experimental
setup chosen to validate our proposed approaches against the
baselines.We report in the following subsections the datasets,
metrics, themethodology considered for the experiments and
implementation details of our proposed approach.

4.1.1 Datasets

The validation of the proposed approach has been performed
by using three real-world datasets that are publicly available5

and widely used in the literature. They are the Australian
Credit Approval (AC), the German Credit (GC) and the
Default of Credit Card Clients (DC) datasets. Such datasets,
whose characteristics are summarized in Table 2, allow us to
evaluate the approach performance on different real-world
credit scoring scenarios.

The AC dataset contains 690 instances composed by 307
reliable cases and 387 unreliable ones. Each instance is char-
acterized by 14 features described in Table 3, and a label
of those features characterizing them as being from a reli-
able or unreliable instance. For confidentiality reasons, all
the feature names and all the values in this dataset have been
modified to meaningless symbols.

5 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/statlog/.

Table 4 GC dataset features

Feature Feature

01 Status of checking account 11 Present residence since

02 Duration 12 Property

03 History of credit 13 Age

04 Purpose 14 Other installment plans

05 Amount of credit 15 Housing

06 Savings account/bonds 16 Other credits

07 Current employment since 17 Job

08 Installment rate 18 Maintained people

09 Status and gender 19 Telephone

10 Other debtors/guarantors 20 Foreign worker

The GC dataset contains 1000 instances composed by 700
reliable cases and 300 unreliable ones. Each instance is char-
acterized by 20 features described in Table 4, and a label
of those features characterizing them as being from a reli-
able or unreliable instance. The dataset version we adopted
is that composed by only numerical attributes, provided by
the University of Strathclyde, Glasgow6.

The DC dataset contains 30,000 instances, composed by
23,364 reliable cases and 6636 unreliable ones. Each instance
is characterized by 23 features described in Table 5, together
with a label that characterizes them as from a reliable or
unreliable instance.

4.1.2 Metrics

To evaluate the performance of the considered algorithms for
credit scoring, we selected some of the metrics discussed in
Sect. 2.2. We discuss them as follows:

Sensitivity: it provides information on the true positive
rate, evaluating the capability of a credit scoring approach
to classify unreliable instances correctly [7]. It is formalized
in Eq. 7, where TP and FN are, respectively, the number of
instances correctly classified as unreliable and incorrectly
classified as reliable.

Sensi tivi t y( Î ) = T P

(T P + FN )
. (7)

Area Under the Receiver Operating Characteristic curve
(AUROC): it is a metric able to assess the predictive capabil-
ity of an evaluationmodel even in the presence of imbalanced
data. The literature indicates it as a reliable metric to evaluate
the performance of a credit scoring model [2]. The receiver
operating characteristic (ROC) curve is firstly built by plot-
ting the true positive rate (also known as sensitivity) and the
false positive rate (also known as fallout) at different clas-

6 https://www.strath.ac.uk/.
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Table 5 DC dataset features Feature Feature

01 Credit amount 13 Bill statement August 2005

02 Gender 14 Bill statement July 2005

03 Education 15 Bill statement June 2005

04 Marital status 16 Bill statement May 2005

05 Age 17 Bill statement April 2005

06 Repayments September 2005 18 Amount paid September 2005

07 Repayments August 2005 19 Amount paid August 2005

08 Repayments July 2005 20 Amount paid July 2005

09 Repayments June 2005 21 Amount paid June 2005

10 Repayments May 2005 22 Amount paid May 2005

11 Repayments August 2005 23 Amount paid April 2005

12 Bill statement September 2005

Fig. 4 ROC curve and AUROC area

sification thresholds (as shown in Fig. 4), and subsequently,
the area under that curve is calculated. The AUROC value is
in the range [0, 1], where 1 indicates the best performance.

4.1.3 Experimental methodology

As a preliminary step, we converted (if necessary) each
instance classification in the datasets from its categorical or
numerical former value into the canonical binary form, using
0 to classify the reliable instances and 1 to classify the unre-
liable ones, according to the simple criterion shown in Eq. 8.

c =
{
1, i f c = reliable
0, i f c = unreliable

∀c ∈ C . (8)

Subsequently, to perform the experimentswe divided each
dataset into two slices: (1) an in-sample part, in order to
detect the optimal parameters of the ensembled algorithms
and the discretization value Δ, and (2) an out-of-sample
part for performance evaluation, applying the k-fold cross-
validation in context of these subsets. Such a criterion, largely

used in many crucial data domains, avoids the over-fitting
[37] problem that occurs by adopting the canonical k-fold
cross-validation approach only, since it does not make a real
separation between the data used to define the evaluation
model and the ones used to evaluate its performance.

In more detail, in our approach, each dataset has been
divided into 50%for in-sample and50%for theout-of-sample
part, and in each of these parts, we then apply a k-fold
cross-validation procedure with k = 5. To perform such an
experimental setup, we firstly perform the common k-fold
cross-validation in the in-sample data, finding the parameters
that maximize mean performance metrics in the validation
data. Then, the found model is used for final evaluation. To
do that, the out-of-sample data are also divided into k−folds,
with each of them tested in that model. We report the mean
metrics asfinal results. Thisway,weget the averageof several
and different configurations of testing data that were never
seen before in the k-fold cross-validation trained models.

4.1.4 Implementation details

All the involved code has been developed in Python using
numpy and scikit-learn (http://scikit-learn.org) libraries. For
the discretization process, we used the np.digi ti ze() func-
tion,which converts the features to a discrete space according
to where each feature value is located in an interval of bins.
Such bins are defined as bins = {0, 1, . . . , Δ − 2,Δ − 1},
whereΔ is calculated experimentally. (We show howwe find
Δ later in this section.) The experiments reproducibility has
been granted by fixing the pseudo-random number generator
seed to 1 for randomly chosen parameters.

According to the credit scoring literature and a series of
experiments aimed to select the best algorithms to use in
our ensemble, we chose and tuned (by using the grid search
method in the in-sample part of each dataset) five algorithms
reported in Table 6, which reports the best algorithms param-
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Table 6 In-sample algorithms
parameters tuning

Tuned value
Algorithm Parameter AC GC DC

Gradient boosting n_estimators 25 25 25

(GBC) learning_rate 0.01 0.1 0.1

max_depth 2 2 4

Adaptive boosting n_estimators 10 100 50

(ADA) learning_rate 0.001 0.1 0.001

Random f orests n_estimators 20 20 20

(RFC) max_depth 5 5 5

min_samples_spli t 0.4 0.2 0.2

Multilayer perceptron alpha 0.0001 0.001 0.0001

(MLP) max_i ter 50 100 50

solver sgd lb f gs lb f gs

Decision tree min_samples_spli t 2 2 2

(DTC) max_depth 1 1 5

min_samples_lea f 1 1 1

eters found for the AC,GC andDC datasets. We define them
as the ones used in our ensemble method through the rest of
this paper.

4.2 Results

We start the experiments by performing a search in a large
range of values for the optimal Δ that defines the upper limit
of the discretization range in our approach (i.e., {1, . . . , Δ}).
The optimal Δ has been selected by taking into account the
average value (α) of all the adopted metrics, calculated as
follows:

α = Sensi tivi t y + AU ROC

2
. (9)

Considering that the ROC curve plots the true positive
rate (also known as sensitivity) versus the false positive rate
(also known as fallout), parametrically, and the area under
that curve represents the AUROC, the adoption of the α value
in this process allows us to privilege the capability to detect
the positive cases.

According to our validation strategy, such a process has
been performed by using only the in-sample part of each
dataset. As shown in Fig. 5, Figs. 6, and 7, which, respec-
tively, refer to the α at eachΔ value for each dataset (in order
to simplify, it shows only the most significant range of val-
ues), the optimal Δ value is 10 for the AC dataset, 52 for the
GC dataset and 9 for the DC dataset.

The second set of experiments are aimed to compare the
performance of the proposed approach with those of the
single and ensemble solutions that operate in the original fea-
ture space. Table 7 shows the performance metrics related to
each single algorithm, the canonical ensemble configurations

0 20 40 60 80 100

0.84

0.86

0.88 (10)

Δ value

α
va
lu
e

Fig. 5 In-sample discretization value tuning AC dataset according to
the average value metric

based on the full agreement ensemble (FAE), majority vot-
ing ensemble (MVE) and weighted voting ensemble (WVE)
strategies and the proposed approach (grayed rows) based on
an ensemble regulated by a stochastic criterion that operates
in the original feature space (SEO) and in our transformed
feature space (SET). The best values are indicated in bold.
Considering that we need to classify each instance, but a
full agreement ensemble strategy can perform this operation
only when all the algorithms agree, instead of excluding this
strategy we decide to classify an event as unreliable in the
absence of an agreement, according to a prudential criterion.

A consideration must be made regarding the performance
evaluation process, since we have chosen not to take into
account complex approaches/strategies in order to assess
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Fig. 6 In-sample discretization value tuning GC dataset according to
the average value metric
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Fig. 7 In-sample discretization value tuning DC dataset according to
the average value metric

the effectiveness of our approach in the context of baseline
algorithms, even in ensemble configurations. This type of
experimental approach finds its reason in the deduction that
a performance improvement measured in these simple con-
figurations will be inherited from their more sophisticated
configurations. This idea is supported by various theories in
the literature, such as, for instance, the ensemble learning
one, as discussed in the work of Livieris et al. [46], or in
that of Pintelas et al. [51], both of them indicating the per-
formance of an ensemble of baseline algorithms as better
than those of each single algorithm, or in [23], where Costa
et al. discuss the problem of combining individual classi-
fiers in ensemble in order to get a more accurate classifier.
It should also be noted how the aforementioned literature

Table 7 Out-of-sample performance: (top) results forACdataset; (mid-
dle) results for GC dataset; and (bottom) results for DC dataset. Best
results per metric are highlighted in bold

Approach Type Dataset Sensitivity AUROC

GBC Algorithm AC 0.850 0.768

ADA Algorithm AC 0.784 0.867

RFC Algorithm AC 0.825 0.842

MLP Algorithm AC 0.586 0.655

DTC Algorithm AC 0.784 0.867

FAE Ensemble AC 0.885 0.722

MVE Ensemble AC 0.796 0.869

WVE Ensemble AC 0.796 0.869

SEO Ensemble AC 0.966 0.630

SET Ensemble AC 0.915 0.876

GBC Algorithm GC 0.701 0.557

ADA Algorithm GC 0.747 0.635

RFC Algorithm GC 0.686 0.530

MLP Algorithm GC 0.773 0.669

DTC Algorithm GC 0.672 0.500

FAE Ensemble GC 0.785 0.679

MVE Ensemble GC 0.702 0.560

WVE Ensemble GC 0.701 0.559

SEO Ensemble GC 0.838 0.679

SET Ensemble GC 0.843 0.700

GBC Algorithm DC 0.849 0.670

ADA Algorithm DC 0.842 0.655

RFC Algorithm DC 0.837 0.644

MLP Algorithm DC 0.782 0.500

DTC Algorithm DC 0.846 0.663

FAE Ensemble DC 0.854 0.681

MVE Ensemble DC 0.846 0.663

WVE Ensemble DC 0.840 0.651

SEO Ensemble DC 0.919 0.696

SET Ensemble DC 0.889 0.724

concept, which indicates the improvement in terms of per-
formance related to the adoption of multiple classifiers with
respect to any single one of them, usually goes hand in hand
with the concept related to the difficulty of optimizing a sin-
gle classification algorithm compared to the optimization of
a set of them. This has been widely discussed by Ala’raj et
al. [3] and Zhang et al. [66] in their works.

4.2.1 Data heterogeneity analysis

Given that the proposed data preprocessing approach com-
bines the discretization and enrichment processes in order to
improve the events characterization and reducing, thus, the
data heterogeneity, we performed an evaluation about the
effective impact of such a heterogeneity reduction. This has
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Fig. 8 Heterogeneity related to the AC dataset, evaluated in terms of
feature variance, before and after the feature space transformation

been done by considering that an huge number of potential
patterns lead toward a big computational complexity regard-
less the involved classification algorithms, with this being a
potential problem in the context of credit scoring systems
that operate in real time.

To perform such study, we measured the data heterogene-
ity in terms of feature variance, as shown inFig. 8, Figs. 9, and
10. The variance gives us a measure on how far the feature
values spread out with regard to their average value. Premis-
ing that, in statistics, the term population indicates the entire
group of samples to study, and that in our context, such a term
indicates the group of values that characterize each dataset
feature, the formalization of the variance is shown in Eq. 10
as follows

σ 2 =

N∑
i=1

(xi − μ)2

N
, (10)

where σ 2 denotes the feature variance (population variance),
xi is the value of the feature at the i th instance, μ is the
average feature value (populationmean), and N is the number
of instances (data points).

If we transpose this canonical formalization of the vari-
ance as a measure of the data heterogeneity (denoted asH in
the following) in our credit scoring domain, we obtain Eq. 11.

H =

X∑
x=1

(
i fnx − i fnx

X

)2

X
, (11)

Starting from the canonical formalization of the variance
shown in Eq. 10, we reformulated it in order to formalize the
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Fig. 9 Heterogeneity related to the GC dataset, evaluated in terms of
feature variance, before and after the feature space transformation
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Fig. 10 Heterogeneity related to the DC dataset, evaluated in terms of
feature variance, before and after the feature space transformation

data heterogeneity, with regard to the set I = {i1, i2, . . . , iX }
(but this applies equally to the set Î = {î1, î2, . . . , î Z }).

In more detail: we replaced σ 2 with H to denote the data
heterogeneity instead of the variance; we replaced N with
X to denote the size of set I (since I = {i1, i2, . . . , iX });
we replaced xi with i fnx to denote a single feature fn of the

instance ix in the set I ; and we replaced μ with i fnx
X to denote

the mean value of the feature fn in the entire dataset I .
In the statistics theory, especially in the extreme value

analysis branch [6],when a dataset is characterized by a lower
variability, its values are more consistent, whereas when the
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variability is higher, its data points are more different and
the extreme values become more likely. For this reason, a
reduction of such a variability in the dataset can lead toward
better classification performance. Therefore, it can be seen
in Fig. 9 that, for the GC dataset, the proposed feature space,
definedbydiscretizing theoriginal feature values followedby
adding four new features, reduces the feature heterogeneity
(expressed in terms of variance) in a substantial way. This
reduction is much more evident in the AC and DC datasets,
as shown in Fig. 8 and Fig. 10. It should also be noted that the
increase in variance measured in the last four features (areas
highlighted in gray) is due to the introduction of them (that
were not there before), according to the proposed approach.

4.2.2 Discussion

The obtained results lead us toward the following consider-
ations:

– As shown in Table 7, in each dataset the proposed
approach outperforms all the single algorithms and all
the ensemble canonical strategies in terms of Sensitiv-
ity and AUROC metrics. It should also be observed how
the proposed ensemble approach outperforms its com-
petitors with and without data preprocessing, but best
AUROC results are achieved by using the new feature
space. Finally, it can be seen that only in the AC and DC
datasets, our ensemble approach gets better sensitivity
results without the data preprocessing, but at a cost of
a lower AUROC score. This means that the most effec-
tive approach is the one that operates in the new feature
space, as the AUROC better describes the classification
performance in imbalanced datasets;

– The combination of the in-sample/out-of-sample and k-
fold cross-validation criteria allowed us obtaining results
not influenced by over-fitting;

– Regarding the ensemble baselines, it could be noticed that
only the full agreement ensemble enhanced the perfor-
mance of the best individual approach of that ensemble,
being the best state-of-the-art competitor. This is mainly
due to the additional prudential criterion we adopted (a
sample is unreliable if there is not an agreement);

– Most of the individual approaches showed very unstable
results. For example, the multilayer perceptron (MLP)
algorithm was the best individual classifier for the DC
dataset when considering the AUROC metric, and gra-
dient boosting (GBC) was the best for the DC dataset.
Both classifiers showed to be very good for one dataset,
but very bad for the other, which means that they are
affected by different levels of imbalance and heterogene-
ity in both datasets. These issues further highlight our
approach contributions.
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Fig. 11 Out-of-sample sensitivity performance overview
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Fig. 12 Out-of-sample AUROC performance overview

As last consideration, we refer to the data heterogene-
ity analysis performed in Sect. 4.2.1, which shows how the
number of potential instance patterns has been dramatically
reduced by preprocessing the feature space according to the
proposed approach. This represents an advantage in terms of
computational complexity, since a minor number of involved
patterns trivially lead toward a less complex process of def-
inition of the evaluation model. It can be considered an
important milestone, considering that we get better classi-
fication performance in our transformed feature space.

Finally, the performance overview in terms of sensitivity
and AUROC metrics, respectively, shown in Figs. 11 and
12, indicates how the proposed combination of a stochastic
ensemble classifier with a discretized/enriched feature space
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process is effective in credit scoring, since such a combina-
tion outperforms the best state-of-the-art competitor with a
large margin.

In summary, our approach is effective for credit scoring
because, in our stochastic ensemble, we define a very rig-
orous classification procedure for the most frequent class
in credit scoring datasets. Our proposed weighting scheme
underweights individual reliable classifications with low
probability and, at the same time, does not affect classi-
fiers with unreliable classifications, no matter how high their
confidences are. This can be better seen from Eq. 6, where
reliable classifications with less confidence than the mean
confidence of all models of the ensemble are declared unre-
liable. This way, a twofold effect can be seen in the final
credit scoring ensemble algorithm: (1) minimization of the
misclassification of reliable samples (most frequent class)
in the datasets, as can be seen in requirement w1 in Eq. 6,
and (2) maximization of correct classification of unreliable
samples (the less frequent class), as can be seen in require-
ment w2 in the same equation. Therefore, the approach
deals efficiently with imbalanced datasets, as it deals with
noise from the individual classifications regarding the reli-
able (most frequent) cases, classifying a reliable sample
only if the individual models of the ensemble have high
levels of confidence in their predicted labels. Fusing such
stochastic ensemble with an enhanced input feature space,
as also proposed in this paper, can boost the credit scoring
performance.

5 Conclusions and future work

Thedevelopment of effective credit scoring tools is becoming
more crucial in this era dominated by consumer credit, with
this scenario leading to an increasing number of researchers
spending efforts to define new approaches able to overcome
open problems in this domain. Notwithstanding, issues like
data heterogeneity and data imbalance are still affecting
real-world credit scoring and, thus, require more complex
solutions.

The proposed approach faces such limitations in credit
scoring by acting on two different fronts, data preprocess-
ing and rule-based ensembling. The data preprocessing step
transforms the original feature space by discretizing the
feature values, enriching such a space by adding meta-
information. The discretization process allows us to merge
similar patterns, reducing the data heterogeneity by merging
similar patterns, whereas the enrichment process counteracts
the loss of information related to the discretization process,
improving the instance characterization in one of two pos-
sible classes (i.e., reliable or unreliable). Subsequently, we
apply on the transformed feature space a stochastic ensemble
criterion able to minimize the reliable samples misclassi-

fication, maximizing the unreliable samples classification,
facing at the same time the data imbalance problem. In
order to produce more valuable results, the validation pro-
cess of the proposed approach has been performed by using
several real-world credit scoring datasets, adopting in this
context a double criterion: k-fold cross-validation and com-
plete data separation. This is because the use of a single
k-fold cross-validation criterion does not grant a real separa-
tion between the data used to train the evaluation model,
and the data used to assess its performance. In addition,
the aforementioned double criterion offers results not biased
by over-fitting. According to this, each dataset has been
divided into two parts, an in-sample part devoted to the train-
ing process of the evaluation model and an out-of-sample
part used to assess the performance, continuing to maintain
in each involved process a k-fold cross-validation criterion
with k=5.

As future work, we are already working to build a gen-
eral domain big data infrastructure using the Amazon cloud,
Apache Spark, Terraform and other tools to automatically
create asmanyAmazon instances as desired and run the entire
computation in a distributed fashion to reduce computational
complexity, in accordance with what has been discussed
in Sect. 3.3.1. Moreover, we plan to extend the proposed
approach to other data domains characterized by similar
problems of those that are present in the credit scoring,
such as security (e.g., telecommunication fraud detection [1],
financial fraud detection [55] and network intrusion detec-
tion [58]), medical applications (e.g., rare diseases diagnosis
[43] and cancer gene expressions [45]) and other class-
imbalanced data domains [35].
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