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Abstract. The increasing amount of credit offered by financial institutions has
required intelligent and efficient methodologies of credit scoring. Therefore, the
use of different machine learning solutions to that task has been growing dur-
ing the past recent years. Such procedures have been used in order to identify
customers who are reliable or unreliable, with the intention to counterbalance fi-
nancial losses due to loans offered to wrong customer profiles. Notwithstanding,
such an application of machine learning suffers with several limitations when put
into practice, such as unbalanced datasets and, specially, the absence of sufficient
information from the features that can be useful to discriminate reliable and un-
reliable loans. To overcome such drawbacks, we propose in this work a Two-Step
Feature Space Transforming approach, which operates by evolving feature infor-
mation in a twofold operation: (i) data enhancement; and (ii) data discretization.
In the first step, additional meta-features are used in order to improve data dis-
crimination. In the second step, the goal is to reduce the diversity of features.
Experiments results performed in real-world datasets with different levels of un-
balancing show that such a step can improve, in a consistent way, the performance
of the best machine learning algorithm for such a task. With such results we aim
to open new perspectives for novel efficient credit scoring systems.

Keywords: Business Intelligence · Credit Scoring · Machine Learning· Algo-
rithms · Transforming

1 Introduction

A report from Trading Economics [1, 2], which is based on the information provided
by the European Central Bank1 data, has shown that credit for consumers has been
regularly increasing over the last years. Such behavior in the Euro zone, which can be
seen in Fig. 1, is also noticed in other markets such as Russia and USA. This increasing
phenomenon has forced Credit Rating Agencies (CRAs), also known as ratings ser-
vices, to define and establish intelligent strategies to offer credit for the right customers,
minimizing financial losses due to bad debts.

Nowadays, CRAs have been using credit scoring systems coupled with machine
learning solutions in order to perform credit scoring. Such approaches take into account
the big data nature of credit datasets, which can enable machine learning models that
can understand credit information from clients and, consequently, discriminate them

1 https://www.ecb.europa.eu
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Fig. 1. Euro zone consumer credit in billions of euros

into reliable or non-reliable users. Credit scoring systems have been vital in many finan-
cial areas [3], as they avoid human interference and eliminate biased analyzes of people
information who request financial services, such as a loan. Basically, most of these ap-
proaches can be considered probabilistic approaches [4], performing credit scoring by
calculating in real time the probability of the loan being repaid, partially repaid and even
not repaid based on the given information (e.g., age, job, salary, previous loans status,
marital status, among others) in credit scoring datasets, helping the financial operator
in the decision of grating or not a financial service [5].

Notwithstanding, credit scoring systems are still limited as a solution for defining
loans for three main reasons. The fist one lies in the dataset nature of the problem itself.
Similar to other problems, namely fraud or intrusion detection [6–8], the source of data
typically contains different distributions of classes [9, 10], which, in the specific case
of credit scoring, is more favorable to the reliable instances rather than to the unreli-
able ones [11]. Such a behavior can seriously affect the performance of classification
algorithms, once they can be often biased to classify the most frequent class [11, 12].
The second problem comes from the fact that some datasets face the cold start issue,
on which the unreliable cases do not even exist. Such an issue has motivated several
proactive methods in the literature to deal with such a problem [13–15]. The last prob-
lem, which motivates our solution presented in this work, arises from the heterogeneity
of the data. Such limitation highlights the fact that the data, the way they are disposed
in datasets, are not enough to describe the different instances. Such information is char-
acterized by features that are very different from each other, even thought they belong
to the same class of information. Therefore, further feature transformations are still
needed to provide insightful credit scoring.

Based on our previous experience [13–18] to deal with credit scoring, we present
in this work a solution for data heterogeneity in credit scoring datasets. We do that by
assessing the performance of a Two-Step Feature Space Transforming (TSFST) method
we previously proposed in [19] to improve credit scoring systems. Our approach to im-
prove features information has a twofold process, composed of (i) enrichment; and (ii)
discretization phases. The enrichment step adds several meta-features in the data, in or-
der to better spread the different instances into separated clusters in the D dimensional
space, whereas the discretization process is done to reduce the number of feature pat-
terns. For the sake of avoiding the risk of overfitting [20] associated to our method and
also highlight its real advantages, we adopted an experimental setup that aims at as-
sessing the real performance of financial systems [21]. Such a methodology considers



our TSFST method evaluated on data never seen before, which we name out-of-sample,
and trained on known and different data, which we name in-sample data. Experiments
considering different classifiers dealing with such feature improvement method spot the
effectiveness of such approach, which can mitigate even the data unbalance nature of
such datasets.

In summary, the main contributions provided through this work are:

1. The establishment of the Two-Step Feature Space Transforming approach, which
enriches and discretizes the original features from credit scoring datasets in order
to boost machine learning classifiers performance when using these features.

2. The assessment of the best classifier to be used with the proposed method, done
after a series of experiments considering the in-sample part of the datasets.

3. The analysis of the method performance considering the out-of-sample part of each
dataset, adding a comparison with the same canonical approach but without con-
sidering our proposed method.

The work presented in this paper is based on our previously published one [19].
Notwithstanding, it has been extended in such a way to add the following new discus-
sions and contributions:

1. Extension of the Background and Related Work section by discussing more relevant
and recent state-of-the-art approaches, extending the information related to this re-
search field with the aim to provide the readers a quite exhaustive overview on the
credit scoring scenario.

2. We changed the order of operations reported in our previous work [19], as we real-
ized that it achieves better results.

3. Inclusion of a new real-world dataset, which allows us to evaluate the performance
using a dataset characterized by a low number of instances (690, which is lower
than 1000 and 30000 from the other datasets) and features (14, which is also a low
number if compared to 21 and 23 from the other datasets).

4. We better discuss the composition of the in-sample and out-of-sample datasets in
terms of number of involved instances and classes. Our choice is based on better
providing details about the data imbalance that is present during both the definition
of the model (done with the in-sample dataset) and the evaluation of its performance
(done with the out-of-sample dataset).

5. We perform an analysis of the asymptotic time complexity related to the proposed
algorithm, which adds valuable information in the context of considering real-time
credit scoring systems.

The rest of this paper has been structured as follows: Section 2 provides information
about the background and the related work of the credit scoring domain. Section 3
introduces the formal notation used and provides the formalization of our proposed
method. Section 4 describes the experimental environment considered. Section 5 reports
and discusses the experimental results in the credit scoring environment and, finally,
Section 6 makes some concluding remarks and points out some directions for future
works.



2 Related Work

In the past few years, it has been witnessed an increasing investment and research over
the credit scoring applications with the aim of performing efficient credit scoring. The
literature [22] describes several kinds of credit risk models in respect to the unreliable
cases, which are commonly known as default cases. Such models are divided into: (i)
Probability of Default (PD) models, which investigate the probability of a default in a
period; (ii) Exposure at Default (EAD) models, which analyse the value the financial
operator is exposed to if a default happens; and (iii) Loss Given Default (LGD) models,
which evaluate the amount of money the operator loses after a default happens. In this
section, we discuss the related work of the first kind of models (PD) only, as they are
related to our proposed method. Further details of EAD and LGD models can be found
in several surveys in the literature [23–25].

The related work in PD models can be strictly divided into six main branches. The
first branch of research is based on statistical methods. For instance, the work in [26]
applies Kolmogorov-Smirnov statistics in credit scoring features to discriminate de-
fault and non-default users. Other methods, such as the Logistic Regression (LR) [27]
and Linear Discriminant Analysis [28] are also explored in the literature to predict the
probability of a default. In [29], the authors propose to use Self Organized Maps and
fuzzy k-Nearest Neighbors for credit scoring.

The second branch of research aims to explore data features transformed into other
feature domains. The work in [18] processes data in the wavelet domain with three
metrics used to rate customers. Similarly, the approach in [17] uses differences of mag-
nitudes in the frequency domain. Finally, the approach in [13] performs comparison of
non-square matrix determinants to allow or deny loans.

The third branch of approaches, which is among the most popular ones in credit
scoring management, is based on machine learning models. In this topic, the work in
[30] considers a Random Forest on preprocessed data. A three-way decision methodol-
ogy with probability sets is considered in [31]. In [32], a deep learning Convolutional
Neural Network approach is applied to pre-selected features that are converted to im-
ages. A specific Support Vector Machines with kernel-free fuzzy quadratic surface is
proposed in [33]. The work in [34] reports the beneficial use of bagging, boosting and
Random Forest techniques to plan and evaluate a housing finance program. An exten-
sive work with machine learning is done in [25], where forty-one methods are compared
when applied to eight Credit Scoring datasets.

In the fourth branch of research, approaches based on general artificial intelligence
such as neural networks have been explored. For example, authors in [35] present the
application of artificial intelligence in the credit scoring area. In [36], the authors use
a novel kind of artificial neural network called extreme learning machines. The work
in [37] reports credit score prediction using the Takagi-Sugeno neuro-fuzzy network.
Finally, the work in [38] performs a benchmark of different neural networks for credit
scoring.

The fifth branch of research considers hybrid approaches, where more than one
model is used to perform a final decision of credit scoring. The work in [39] used
Gabriel Neighbourhood Graph and Multivariate Adaptive Regression Splines together
with a new consensus approach. Authors in [40] used seven base different classifiers



in dimensionality reduced data with Neighborhood Rough Set. The authors propose a
novel ranking technique used to decide the top-5 best classifiers to be part of a lay-
ered ensemble. The work in [41] uses several classifiers to validate a feature selection
approach called group penalty function. In [42], a similar procedure is done, but includ-
ing normalization and dimensionality reduction preprocessing steps and an ensemble
of five classifiers optimized by a Bayesian algorithm. The same number of classifiers
is used in [43], but with genetic algorithm and fuzzy assignment. In [44], ensembles
are done according to classifier soft probabilities and, in [45], an ensemble with feature
clustering-based feature is done in a weighted voting approach.

The last set of models consider specific features of the problem, such as user pro-
filing in social networks [46–49], news from media [50], data entropy [16] , linear-
dependence [13, 15], among others. One interesting research in this topic is considering
proactive methods [13–15], which previously assume that the credit scoring datasets are
biased and alleviate such a problem before they happen.

Although several approaches have been proposed in literature, there are still many
challenges in credit scoring research. All these issues reduce in a significant way the
performance of Credit Scoring systems, specially when applied to real-world credit risk
management. Such challenges can be enumerated as follows:

1. Lack of Datasets, caused mainly by privacy, competition, or legal issues [51].
2. Non-adaptability, commonly known as overfitting, where Credit Scoring models

are unable to correctly classify new instances.
3. Cold-start, when the datasets used to train a model do not contain enough informa-

tion about default and non default cases [52–56].
4. Data Unbalance, where an imbalanced class distribution of data [57, 58] is found,

being typically beneficial to the non-default class.
5. Data Heterogeneity, where the same information is represented differently in dif-

ferent data samples [59].

Our approach differs from the previous ones in the literature as it deals with the
Data Heterogeneity problem in a two step process. To do that, we perform a series of
transforming steps in order to make the original heterogeneous data better discernible
and separable, which can boost the performance of any classifier. More details of our
approach are discussed in the next section.

3 The Two-step Feature Space Transforming Approach

Before discussing our approach in details, let us define the formal notation used from
this section to the rest of this work. Given a set S = {s1,s2, . . . ,sX} of samples (or
instances) already classified in another set C = {reliable,unreliable}, we then split S
into subsets S+ ⊆ S of reliable or non default cases, and another subset S− ⊆ S of
unreliable cases, where S+∩S−= /0. Lets also consider another set P= {p1, p2, . . . , pX}
as the labels (or predictions) given by a credit scoring system for each sample that
will split S as discussed before, and Y = {y1,y2, . . . ,yX} their true labels where P ∈C,
Y ∈ C and |S| = |P| = |Y |. By considering that each sample has a set of features F =



{ f1, f2, . . . , fN} and that each sample belongs to only one class in the set C, we can
formalize our objective as shown in Equation 1 as follows:

max
0≤α≤|S|

α =
|S|

∑
z=1

β(pz==yz), (1)

where βb is a logical function that converts any proposition b into 1 if the proposition
is true, and 0 otherwise. In other words, our goal is to maximize the total number of
correct predictions, or β(pz==yz) = 1. To increase α of this objective function, several
approaches can be chosen, as discussed previously in the related work in Section 2.
These can be: (i) select and/or transform features [13, 17, 18]; (ii) select the best classi-
fier [30, 32, 33]; or (iii) select the best ensemble of classifiers [39, 40, 42].

In this work, we choose a solution that includes the first and second approaches
simultaneously, proposing a twofold transforming technique that boosts features f ∈ F
and applying them to the best classifier. This boosting is done in such a way to better
distribute the features to the classes of interest in the N dimensional space. With such
a procedure, we expect to maximize α when applying such boosted features to the best
classifier for this task.

Fig. 2. Full pipeline of credit scoring systems including our proposed Two-Step Feature Space
Transforming approach.

As can be seen in proposed model pipeline in Figure 2, our approach is composed
of four main steps, described as follows:

1. Data Enrichment: a series of additional features F̂ are added to the original ones
in F , in order to include useful information for better credit scoring.

2. Data Discretization: once enriched, the features are now discretized to lie in a
given range, which is defined in the context of experiments done in the in-sample
part of the dataset.

3. Model Selection: chooses the model to use in the context of the credit score ma-
chine learning applications.

4. Classification: implements the classification algorithm to classify new instances Ŝ
into reliable or unreliable.

We discuss each of the above-mentioned steps of our proposed method in the fol-
lowing subsections.



3.1 Data Enrichment

As discussed previously, several works in the literature have pointed out that trans-
forming features can improve the data domain, thus benefiting any machine learning
technique able to discriminate them into disjoint classes. One specific kind of features
transformation is adding meta-features [60]. Such transformation is commonly used in
a machine learning research branch called meta-learning [61]. Such additional features
are composed of summarizing or reusing the existing ones, by calculating values such
as the minimum, maximum, mean value, among others. Such values can be calculated
at each vector domain, or considering all vectors in a matrix of features.

In our proposed method, we use these meta-features in order to balance the loss of
information caused by the data heterogeneity issue present in credit scoring datasets,
adding further data created to boost the characterization of features F into the reliable
or unreliable classes of interest. Formally, given the set of features F = { f1, f2, . . . , fN},
we add MF = {m fN+1,m fN+2, . . . ,m fN+Z} new meta-features, obtaining the new set
of features shown in Equation 2.

F̂ = { f1, f2, . . . , fN ,m fN+1,m fN+2, . . . ,m fN+Z}. (2)

Therefore, we chose for our proposed method Z = |MF | = 4 or, in other words,
we add to the original features four additional meta-features. These meta-features have
been calculated feature vector-wise and are the following: Minimum value (min), Max-
imum value (max), Mean (mean), and Standard Deviation (std), then we have MF =
{min,max,mean,std}. By adding more insightful data to the original feature set, this
new process minimizes the pattern reduction effects that are normally present in the het-
erogeneous nature of credit scoring data. Such additional features are better formalized
in a parameter u in Equation 3

µ =



min = min( f1, f2, . . . , fN)

max = max( f1, f2, . . . , fN)

mean =
1
N

∑
N
n=1( fn)

std =
√

1
N−1 ∑

N
n=1( fn− f̄ )2

(3)

3.2 Data Discretization

The data discretization process is commonly used in machine learning algorithms as a
way of data transform [62]. It focuses on transforming the features by dividing each of
them into a discrete number that falls in independent intervals. It means that numerical
features, being discrete or continuous, will be mapped to lie in one of these intervals,
standardizing the whole set of original features. Such a procedure was proven to boost
the performance of many machine learning models [63, 64].

Although the fact that, in one hand, the process of discretization comes with the
drawback of filtering some sort of additional information gathered from the meta-
features in the previous step of our method, it comes with the advantage of understand-
ability, which comes from the conversion of the continuous space to a more limited



(discrete) space [62], which guides a faster and precise learning [63]. Figure 3 shows
one example of discretizing six feature values in the continuous range {0, . . . ,150} into
discrete values in the discrete range {0,1, . . . ,15}.
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Fig. 3. Discretization process example of continuous features.

In our approach, each of the features f ∈ F in the enriched Ŝ from the previous step
are transformed through discretization. This is done to move the original continuous
range to a defined discrete range [0,1, . . . ,r] ∈ Z, where r is found experimentally as
will be described later in this work. By defining the discretization procedure f r−→ d, we
operate in order transform each f ∈ F into one of the values in the discrete range of
integers d = [1,2, . . . ,r]. Such a process reduces significantly the number of possible
different patterns in each f ∈ F , as shown in Equation 4.

{ f1, f2, . . . , fN}
r−→ {d1,d2, . . . ,dN}, ∀ ŝ ∈ Ŝ (4)

3.3 Model Selection

The following step of the credit scoring pipeline chooses the model to be applied in
preprocessed features by our TSFST approach. According to the u and r parameters
from the enrichment and and discretization phases of our approach respectively, a new
set of features T SFST (S) is formalized as shown in Equation 5.

T SFST (S) =


d1,1 d1,2 . . . d1,N m fu(1,1) m fu(1,2) m fu(1,3) m fu(1,4)

d2,1 d2,2 . . . d2,N m fu(2,1) m fu(2,2) m fu(2,3) m fu(2,4)

...
...

. . .
...

...
...

. . .
...

dX ,1 dX ,2 . . . dX ,N m fu(X ,1) m fu(X ,2) m fu(X ,3) m fu(X ,4)

 (5)

Such features are used both in the training and evaluation steps of the model. The
model chosen in our TSFST model is the Gradient Boosting (GB) algorithm [65]. We
chose this algorithm mainly because it follows the idea of boosting. In other words,
the classifier is composed initially of weak learning models that keep only observations
these models successfully classified. Then, a new learner is created and trained on the
set of data that was poorly classified before. Decision trees are usually used in GB.



Performance experiments done in the in-sample part of each dataset assess the choice
of such a model, as will be discussed with further details later in this work.

3.4 Data Classification

The last step of our approach applies the new T SFST -based classifier in the evaluation
(unknown) data, in order to maximize the α metric discussed in Equation 1. For that,
we consider again S as the classified samples, which will be the training (or known)
samples, but now we also define S̄, which is a new set of unclassified (or unknown)
samples to be evaluated in the T SFST classifier. Such a procedure is done as shown in
Algorithm 1.

Algorithm 1 TSFST classification pipeline
Input: cla=classifier, S=classified (training) instances, S̄=unclassified instances, u=meta-features to calculate, r=upper

bound of the discretization process.
Output: out=Classification of instances in S̄
1: procedure INSTANCECLASSIFICATION(cla, S, S̄, u, r)
2: MF ← getMetaFeatures(S,u) . Step #1 (enrichment) of TSFST model in the training data
3: S← concat(S,MF) . Concat original data with meta features found
4: Ŝ = getDiscretizedFeatures(S,r) . Step #2 (discretization) of TSFP model in the training data
5: model←Classi f ierTraining(alg, Ŝ) . Classifier training using the TSFST transformed training data
6: MF ′← getMetaFeatures(S̄,u) . Repeat TSFST procedure in the testing samples
7: S̄← concat(S̄,MF ′)
8: ˆ̄S = getDiscretizedFeatures(S̄,r)
9: for each ˆ̄s ∈ ˆ̄S do . Classifier evaluation in each TSFST transformed testing sample
10: c← classi f y(model, ˆ̄s)
11: out.add(c)
12: end for
13: return out
14: end procedure

In the step 1 of this algorithm, the following parameters are used as input: (i) the
classification algorithm cla to be trained and tested using the T SFST feature set; (ii) the
training classified data S in its original format; (iii) the new instances to be classified S̄
also in their original format; and (iv) T SFST parameters, such as the meta-features u to
be used in the enhancement step and the upper bound r to be used in the discretization
step. The data transformation related to our T SFST approach is performed for sets of
training data S and testing data S̄ at steps 2-4 and 6-8 respectively, and the transformed
data Ŝ of the training set trains the model cla at step 5. The classification process is
performed at steps 9-12 for each instance ˆ̄s in the transformed testing samples set ˆ̄S,
with final classifications stored in the out vector. At the end of the process, classification
labels generated by our proposed boosted classifier are returned by the algorithm at step
13.

In order to evaluate the impact in terms of response-time of the proposed approach
in a real-time scoring system, we evaluated the asymptotic time complexity of the pro-
posed Algorithm 1 in terms of big-O notation. According to the formal notation pro-
vided in Section 3, we can do the following observations:



(i) the complexity of the steps 2-4 and 6-8 is O(N), since our T SFST data transfor-
mation performs a discretization of the original feature values F at N · |F | times,
after several meta-features are added to them;

(ii) the complexity of the step 5 depends on the adopted algorithms, which in our case
is the Gradient Boosting, an algorithm characterized by a training complexity of
O(N · |F | ·π), where π denotes the number of used trees;

(iii) the complexity of the cycle in the steps 9-12 is O(N2), since it involves the pre-
diction complexity of Gradient Boosting (i.e., O(N ·π)) for each instance in the
set ¯̂S.

On the basis of the aforementioned observations, we can express the asymptotic
time complexity of the algorithm as O(N2), an asymptotic time complexity that can be
reduced by distributing the process over different machines, by employing large scale
distributed computing models (e.g. MapReduce [66, 67]).

4 Experimental Setup

In this section, we discuss all the experimental environment we considered to perform
credit scoring experiments. In the following subsections we discuss: (i) the datasets con-
sidered; (ii) the metrics used to assess performances; (iii) methodology used to evaluate
the methods; and (iv) models considered and implementation aspects of the proposed
TSFST method.

4.1 Datasets

We consider three datasets to evaluate our approach: (i) the Australian Credit Approval
(AC); (ii) the German Credit (GC); and (iii) the Default of Credit Card Clients (DC).
These datasets represent three real-world data, characterized by a different number of
instances and features, and also a different level of data unbalance. Such datasets are
publicly available2, and previous works the literature have used them to benchmark
their approaches. Such data distribution is described in Table 1.

Table 1. Datasets information

Dataset Total Reliable Unreliable Number of Number of Reliable/unreliable
name instances instances instances features classes instances

|S| |S+| |S−| |F | |C| (%)

AC 690 307 383 14 2 44.50 / 55.50
GC 1,000 700 300 21 2 70.00 / 30.00
DC 30,000 23,364 6,636 23 2 77.88 / 22.12

The AC dataset is composed of 690 instances, of which 307 classified as reliable
(44.50%) and 387 classified as unreliable (55.50%), and each instance is composed of
14 features, as detailed in Table 2. For data confidentiality reasons, feature names and
values have been changed to meaningless symbols.

2 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/statlog/



Table 2. Features of AC Dataset

Field Type Field Type

01 Categorical field 08 Categorical field
02 Continuous field 09 Categorical field
03 Continuous field 10 Continuous field
04 Categorical field 11 Categorical field
05 Categorical field 12 Categorical field
06 Categorical field 13 Continuous field
07 Continuous field 14 Continuous field

The GC dataset is composed of 1,000 instances, of which 700 classified as reliable
(70.00%) and 300 classified as unreliable (30.00%), and each instance is composed of
20 features, as detailed in Table 3 below.

Table 3. Features of GC Dataset [19]

Field Feature Field Feature

01 Status of checking account 11 Present residence since
02 Duration 12 Property
03 Credit history 13 Age
04 Purpose 14 Other installment plans
05 Credit amount 15 Housing
06 Savings account/bonds 16 Existing credits
07 Present employment since 17 Job
08 Installment rate 18 Maintained people
09 Personal status and sex 19 Telephone
10 Other debtors/guarantors 20 Foreign worker

Finally, the DC dataset is composed of 30,000 instances, of which 23,364 classified
as reliable (77.88%) and 6,636 classified as unreliable (22.12%), and each instance is
composed of 23 features, as detailed in Table 4.

4.2 Metrics

The literature in machine learning has been investigating several different metrics through
the last decades, in order to find criteria suitable for a correct performance evaluation
of credit scoring models [68]. In [69], several metrics based on confusion matrix were
considered, such as Accuracy, True Positive Rate (TPR), Specificity, or the Matthews
Correlation Coefficient (MCC). Authors in [70] choose metrics based on the error anal-
ysis, such as the Mean Square Error (MSE), the Root Mean Square Error (RMSE) or
the Mean Absolute Error (MAE). Finally there are also some works like in [71] that
evaluate metrics based on the Receiver Operating Characteristic (ROC) curve, such as
the Area Under the ROC Curve (AUC). Considering that some of these metrics do not



Table 4. Features of DC Dataset [19]

Field Feature Field Feature

01 Credit amount 13 Bill statement in August 2005
02 Gender 14 Bill statement in July 2005
03 Education 15 Bill statement in June 2005
04 Marital status 16 Bill statement in May 2005
05 Age 17 Bill statement in April 2005
06 Repayments in September 2005 18 Amount paid in September 2005
07 Repayments in August 2005 19 Amount paid in August 2005
08 Repayments in July 2005 20 Amount paid in July 2005
09 Repayments in June 2005 21 Amount paid in June 2005
10 Repayments in May 2005 22 Amount paid in May 2005
11 Repayments in April 2005 23 Amount paid in April 2005
12 Bill statement in September 2005

work well with unbalanced datasets, like, for example, the metrics based on on the con-
fusion matrix, many works in literature have been addressing the problem of unbalanced
datasets by adopting more than one metric to correctly evaluate their results [72].

In our work, we choose to follow that direction, adopting a hybrid strategy to mea-
sure the performance of the tested approaches. Our metrics chosen are based on confu-
sion matrix results and ROC curve calculation and are described in the following:

True Positive Rate Given TP the number of instances correctly classified as unreliable,
and FN the number of unreliable instances wrongly classified as reliable, the True
Positive Rate (TPR) measures the rate of correct classification of unreliable users in a
credit scoring model m in any test set S, as can be shown in Equation 6:

T PRm(S) =
T P

(T P+FN)
. (6)

Such a metric, also known as Sensitivity, indicates the proportion of instances from
the positive class that are correctly classified by an evaluation model, according to the
different classes of a given problem [36].

Matthews Correlation Coefficient The Matthews Correlation Coefficient (MCC) is
suitable for unbalanced problems [73, 74] as it does a balanced evaluation of perfor-
mance. Its formalization, shown in Equation 7, results in a value in the range [−1,+1],
with +1 when all the classifications are correct and −1 otherwise, whereas 0 indicates
the performance related to a random predictor. The MCC of a model m that classifies
any new set S is calculated as:

MCCm(S) =
(T P ·T N)− (FP ·FN)√

(T P+FP) · (T P+FN) · (T N +FP) · (T N +FN)
. (7)

It should be observed that MCC can be seen as a discretization of the Pearson
correlation [75] for binary variables.



AUC The Area Under the Receiver Operating Characteristic curve (AUC) represents
a reliable metric for the evaluation of the performance related to a credit scoring model
[76, 69]. To calculate such a metric, the Receiver Operating Characteristic (ROC) curve
is firstly built by plotting the Sensitivity and the False Positive Rate at different classi-
fication thresholds and, finally, the area under that curve is calculated.

The AUC metric returns a value in the range [0,1], where 1 denotes the best perfor-
mance. AUC is a metric able to assess the predictive capability of an evaluation model,
even in the presence of unbalanced data [76].

Performance This metric is used in the context of our work in order to compare the
several classifiers performance. It is calculated by summarizing all metrics presented
before in all datasets in just one final metric. Considering ζ the number of datasets in
the experiments, the final performance P of a method m in any set S is calculated as:

Pm(S) =
∑

ζ

z=1
T PR(S)z +AUC(S)z +MCC(S)z

3
ζ

(8)

We also calculate the performance for a model m in a single dataset z as follows:

Pm,z(S) =
T PR(S)z +AUC(S)z +MCC(S)z

3
. (9)

Such a metric also returns a value in the range [0,1], as it comes from three metrics
in the same values range.

4.3 Experimental Methodology

We choose an evaluation criterion that divides each dataset into two pieces: (i) the (in-
sample), used to identify the best model to use to compare with and without our T SFST
method and the best parameters of our method; and (ii) the (out-of-sample), which we
use for final evaluation. Such a strategy allows the correct evaluation of the results
by preventing the algorithm from yielding results biased by over-fitting [20]. Such an
evaluation procedure has also been followed by other works in the literature [77].

For this reason, each of the adopted datasets has been divided into an in-sample
part, containing 80% of the dataset, and an out-of-sample part, containing the remaining
20%. We opt for such a data split to follow some works in literature [78–80]. In addition,
with the aim to further reduce the impact of the data dependency, we have adopted a
k-fold cross-validation criterion (k=5) inside each in-sample subset. Information about
these subsets are reported in Table 5.

4.4 Considered Models and Implementation Details

In order to evaluate the qualities of the proposed transforming approach, we consider
several models, represented by machine learning classifiers, in order to select the best
one to be used in our approach and to compare its performance before and after our
T SFST approach is considered in that model. For this task, we have taken into account



Table 5. In-sample and out-of-sample datasets information

Dataset In-sample Out-of-sample
name Reliable % Unreliable % Reliable % Unreliable %

AC 124 45.0 152 55.0 125 45.5 150 54.5
GC 292 73.0 108 27.0 268 67.2 131 32.8
DC 9307 77.5 2693 22.5 9404 78.4 2595 21.6

the following machine learning algorithms widely used in the credit scoring literature:
(i) Gradient Boosting (GB) [81]; (ii) Adaptive Boosting (AD) [82]; (iii) Random Forests
(RF) [83]; (iv) Multilayer Perceptron (MLP) [84]; and (v) Decision Tree (DT) [85].

The code related to the experiments was created with Python using the scikit-learn3

library. For the discretization process, we used the np.digitize() function, which con-
verts the features to a discrete space according to where each feature value is located
in an interval of bins. Such bins are defined as bins = {0,1, . . . ,r− 2,r− 1}, where
r is calculated experimentally (we show how we find r later in this section). In order
to keep the experiments reproducible, we have fixed the seed of the pseudo-random
number generator to 1. In our proposed method, we fixed |u| = 4, calculating the four
meta-features described in section 3.

5 Experimental Results

To validate our proposed approach, we performed an extensive series of experiments.
We classified the experiments as follows:

1. Experiments performed in the in-sample part of each dataset: used to assess the
benefits of our approach according to several configurations of parameters in credit
scoring. For that, we average results of a five-fold cross validation.

2. Experiments performed in the out-of-sample part of each dataset: used to compare
our approach with some baselines in real credit scoring. For this experiment, we
used the in-sample part to train and unknown out-of-sample data to test.

5.1 In-sample Experiments

In this set of experiments which uses cross validation in the in-sample part of each
dataset, we choose the following evaluation scenarios:

1. We evaluate the advantages, in terms of performance, of the adoption of some
canonical data preprocessing techniques as input to our data transform approach;

2. We report results in order to find the best parameter r of the discretization step of
our proposed approach.

We discuss the results of these experiments as follows.

3 http://scikit-learn.org



Preprocessing Benchmarking The literature has been strongly suggesting the use of
several preprocessing techniques [86, 87] to organize better the data distribution as to
training better and boosting machine learning algorithms performance. One straightfor-
ward way of doing this is to put feature values in the same range of values, therefore, we
decided to verify the performance improvement related to the adoption of two largely
used preprocessing methods: normalization and standardization. In the normalization
process, each feature f ∈ F is scaled into the range [0,1], whereas the standardization
(also known as Z-score normalization) re-scales the feature values in such a way that
they assume the properties of a Gaussian distribution, with mean equals to zero and
standard deviation equals to one.

Performance results are shown in Table 6, which reports the mean performance of
the five fold cross validation (i.e., related to the Accuracy, MCC, and AUC metrics)
measured in all datasets and all algorithms after the application of the aforementioned
methods of data preprocessing, along to that measured without any data preprocessing.
Premising that the best performances are highlighted in bold, and all the experiments
involve only the in-sample part of each dataset, on the basis of the obtained results, we
can do the following observations:
- the data normalization and standardization processes do not lead toward significant

improvements, since 7 times out of 15 (against 4 out of 15 and 4 out of 15) we obtain
a better performance without using any canonical data preprocessing.

- in the context of the experiments performed without a data preprocessing, Gradient
Boosting (GB) shows to be the best algorithm between those taken into account, since
it gets the better mean performance on all datasets (i.e., 0.6574 against 0.6431 of ADA,
0.6388 of RFA, 0.5317 of MLP, and 0.6147 of DTC);

- for the aforementioned reasons we decided to not apply any method of data prepro-
cessing, using Gradient Boosting as reference algorithm to evaluate our approach
performance.

Table 6. Average performance with preprocessing

Algorithm Dataset Non-preprocessed Normalized Standardized

GBC AC 0.8018 0.8005 0.8000
ADA AC 0.7495 0.6735 0.7179
RFA AC 0.8011 0.7505 0.8120
MLP AC 0.5225 0.8079 0.8073
DTC AC 0.7662 0.7093 0.7690

GBC GC 0.5614 0.5942 0.6007
ADA GC 0.5766 0.6246 0.5861
RFA GC 0.5540 0.5614 0.5579
MLP GC 0.6114 0.5649 0.5589
DTC GC 0.5796 0.5456 0.5521

GBC DC 0.6087 0.5442 0.6076
ADA DC 0.6031 0.5361 0.5980
RFA DC 0.5613 0.4909 0.5586
MLP DC 0.4613 0.6177 0.5985
DTC DC 0.4982 0.4572 0.5185

Best cases 7 4 4



Discretization Range Experiments The goal related to this set of experiments is the
definition of the optimal range of discretization r to use in the context of the selected
classification algorithm. Figure 4 reports the obtained results in terms of the perfor-
mance metric for each dataset. Such results indicate 106, 25, and 187 as optimal r
values for the AC, GC, and DC datasets respectively.
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Fig. 4. In-sample r Value Definition

5.2 Out-of-sample Experiments

Now that we found the discretization parameter of our proposed approach, we focus
our attention on discussing the more realistic scenario of credit scoring. For that we
perform testing on unseen out-of-sample part of the dataset, comparing the effective-
ness of such approach with other competitors. We apply the algorithm and the r value
detected through the previous experiments in order to evaluate the capability of the
proposed T SFST model with regard to a canonical data model (GB), based on the orig-
inal feature space. The analysis of the experimental results shown in Figure 5 leads us
toward the following considerations:

1. as shown in Figure 5, the proposed TSFST model outperforms its competitor in
terms of TPR, MCC, and AUC, in all the datasets, except for a single case (i.e., TPR
in the DC dataset);
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Fig. 5. Out-of-sample classification results, comparing GB with and without our proposed T SFST



2. although it does not outperform its competitor in terms of TPR in the DC dataset,
its better performance in terms of MCC, and AUC indicates that the best competitor
value has produced a greater number of false positives and/or negatives;

3. for the same reason above, the better performance of our approach in terms of TPR
can not be considered a side effect related to the increase in terms of false positive
rate and/or false negative rate, since we also outperform the competitor in terms of
MCC and AUC;

4. considering that the AC, GC, and DC datasets are different in terms of data size,
level of balancing, and number of features, the obtained results prove the effective-
ness of the proposed approach in heterogeneous credit scoring contexts;

5. the adopted validation method, based on the in-sample/out-of-sample strategy, com-
bined with a k-fold cross-validation criterion, proves the real effectiveness of the
proposed approach, since the performance has been evaluated on data never used
before, avoiding over-fitting;

In summary, the experimental results have proved that the proposed approach im-
proves the performance of a machine learning algorithm in the credit scoring context,
allowing us its exploitation in several state-of-the-art approaches.

6 Conclusion

The growth of credit in economy nowadays has required scoring tools in order to allow
reliable loans in complex scenarios. Such an opportunity has led an increasing num-
ber of research focusing on proposing new methods and strategies. Notwithstanding,
similarly to other applications such as fraud detection or intrusion detection, a natural
imbalanced distribution of data among classes of interest is commonly found in credit
scoring datasets. Such a limitation raises issues in models that could be biased in always
classifying samples as the class they have more access in their training. In a such sce-
nario, a slight performance improvement of a classification model produces enormous
advantages, which in our case are related to the reduction of financial losses.

In this work, we report a new research inspired by our previous findings [19]. We
propose a method composed of a twofold transforming process in credit scoring data,
which acts by transforming the features through adding meta-features and also discretiz-
ing the resulting new feature space. From our experiments, we could raise the following
conclusions; (i) our approach boosts classifiers that use original features; (ii) it is able
to improve the performance of the machine learning algorithms; (iii) our approach fits
better in boosted-based classifiers such as gradient boosting. Such findings open new
perspectives for the definition of more effective credit scoring solutions, considering
that many state-of-the-art approaches are based on machine learning algorithms.

As future work, we envision to validate the performance of the proposed data model
in the context of credit scoring solutions that implement more than a single machine
learning algorithm, such as, for example, homogeneous and heterogeneous ensemble
approaches. By achieving good results in this new modelling scenario, we believe we
can achieve a more real world solution for credit scoring.
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