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Abstract: The dramatic increase in devices and services that has characterized modern societies
in recent decades, boosted by the exponential growth of ever faster network connections and the
predominant use of wireless connection technologies, has materialized a very crucial challenge
in terms of security. The anomaly-based intrusion detection systems, which for a long time have
represented some of the most efficient solutions to detect intrusion attempts on a network, have to
face this new and more complicated scenario. Well-known problems, such as the difficulty of
distinguishing legitimate activities from illegitimate ones due to their similar characteristics and their
high degree of heterogeneity, today have become even more complex, considering the increase in
the network activity. After providing an extensive overview of the scenario under consideration,
this work proposes a Local Feature Engineering (LFE) strategy aimed to face such problems through
the adoption of a data preprocessing strategy that reduces the number of possible network event
patterns, increasing at the same time their characterization. Unlike the canonical feature engineering
approaches, which take into account the entire dataset, it operates locally in the feature space of each
single event. The experiments conducted on real-world data showed that this strategy, which is based
on the introduction of new features and the discretization of their values, improves the performance
of the canonical state-of-the-art solutions.

Keywords: intrusion detection; anomaly detection; networking; data preprocessing; machine learning

1. Introduction

The literature offers several definitions of the intrusion event, e.g., Sundaram [1] defined it
as an attempt to bypass or compromise a specific objective, which can be a single machine or an
entire network. The literature also indicates the CIA model (also called CIA triad or CIA triangle)
as the security model to take into account in terms of goals to achieve [2]. It defines the three main
requirements of security, namely confidentiality, integrity, and availability, as summarized in Figure 1.
The confidentiality requirement expresses the need that a resource related to a machine/network must
be accessed only by authorized users; the integrity requirement is related to the need that a resource can
be modified only by authorized users, according to their permissions; and the availability requirement
means that a resource must be available to authorized users in the times established for it, without any
limitation or interruption.

In the context of network security, Intrusion Detection Systems (IDSs) [3] represent the main tool,
as in their different configurations and modalities they are able to analyze the events that occur in a
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network, with the aim of detecting the illegitimate ones. Nowadays, this activity has become crucial
due to the huge number of network services, public and private, which involve critical and important
areas, such as health services [4], education [5], financial services [6], and so on.

One of the most crucial transversal security problems, that of privacy, was deeply investigated by
Verykios et al. [7], who provided an overview on the area of privacy-preserving data mining, whereas
Narwaria and Arya [8] provided a comparative analysis of some well-known privacy preservation
techniques. However, the massive growth of network security risks is given by the contribution of
different factors, such as the increase of wireless network connections [9], the advent of the Internet
of Thing (IoT) [10], and the large development of new broadband infrastructures (optical fiber [11],
5G [12], etc.). Therefore, in the context of the network protection, the choice of using IDSs together
with other canonical protection systems (e.g., firewalls [13]) mainly depend on the inability of these to
operate extensively, without previously defined rules.

Figure 1. Security CIA model.

Given this background, the literature identifies different types of IDSs: although they can operate
in different manner, their common objective is the analysis and classification of each network event,
distinguishing the normal activities from the intrusion ones. For instance, the literature reports
intrusion detection approaches based on machine learning criteria such as gradient boosting [14],
adaptive boosting [15], and random forests [16]. Other proposals involve artificial neural networks [17],
probabilistic criteria [18], or data transformation/representation [19–21], similarly to what is done,
in terms of scenario and data balance, in closely related domains [22–30]. It should be noted that,
besides sharing the same objectives, they also tackle analogous problems, such as the difficulty of
classifying intrusion events that are very similar to normal ones in terms of characteristics or the
difficulty to detect novel form of attacks (e.g., zero-days attacks [31]).

For these reasons, after having positively evaluated the effectiveness of data transformation
in other fields [32–34], which show it to be able to achieve better characterization of the involved
information and a clear reduction of the possible feature patterns, we experimented on this strategy
in the IDS domain. In more detail, the proposed LFE strategy operates by introducing a series
of new features calculated on the basis of the existing ones, along with a discretization of each
feature value, according to a numeric range experimentally defined. The combination of these two
data pre-processing steps offers a better characterization of each network event (introduction of
new features) and helps to reduce the number of feature patterns by aggregating the similar ones
(discretization process).

Scientific Contribution

This work represents an extension of a previous one [32], completely rewritten and extended,
formally and substantially, by updating and expanding the background and related work under
the light of the recent literature, as well as providing an extensive overview of the scenario under
consideration. Specifically, each provided reference is verified and updated if necessary, and further
aspects—very close to the research area taken into account—are added and discussed, such as the
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analysis of the common classes of network attacks, and the process of assessment of the network
vulnerabilities.

A novel contextualization of this work in the feature engineering technique area is also performed,
underlining advantages and differences with regard to the canonical literature exploitation of such a
technique. In addition, the formalization of the algorithms related to the proposed strategy is detailed,
and the related impact in terms of time complexity is analyzed and discussed. A detailed description
of the involved state-of-the art algorithms of classification, in terms of literature references, operating
principles, and used parameters, is also provided.

Detailed and extensive information about the process of evaluation in terms of the three adopted
metrics is added, with the aim to offer an in-deep analysis of the experimental results in terms of
both each single metrics and their average. An overview about the overall mean performance of the
proposed LFE strategy, with regard to its application in the context of all the algorithms (aimed to
estimate its behavior among the most common classification algorithms in the literature), and all the
network events (aimed to estimate its behavior for the different types of intrusion events), is also
provided. The main contributions related to this work can then be summarized as follows:

- a definition of the proposed LFE strategy in the intrusion detection context, with regard to the
current literature, along with a preliminary analysis of the IDS solutions and the involved network
vulnerabilities, in terms of common classes of network attacks;

- a formalization of the LFE strategy in the context of the feature engineering technique area, presenting
its implementation, advantages, and differences, with regard to the canonical literature use;

- a definition of a classification algorithm that exploits the LFE strategy to perform the network
events classification into two classes (i.e., normal or intrusion), together with the evaluation of its
asymptotic time complexity;

- a detailed categorization of the events included in the widely adopted NSL-KDD dataset, through
the definition of a novel taxonomy, and an independent experimental evaluation of our strategy
carried out separately by intrusion typology.

- an evaluation of the proposed LFE strategy in the context of additional datasets, aimed to evaluate
its capabilities to face real-world scenarios characterized by heterogeneous type of network
attacks; and

- an extensive validation of our LFE strategy, made by comparing it to a series of largely used
solutions based on different state-of-the-art algorithms, using real-world data and three different
metrics of evaluation, whose results are evaluated both individually and in terms of their average.

This work is structured as follows. Section 2 provides related works in the domain, whereas
Section 3 includes background information, metrics for evaluation, and IDS essential concepts. Section 4
presents the formal notation used in this work, together with the formulation of our objective. Section 5
describes the implementation of the proposed strategy, from the feature engineering approach to the
algorithm formalization and complexity analysis. Section 6 provides information on the development
environment, the adopted real-world dataset and evaluation metrics, and the validation modality.
Section 7 analyzes and discusses the experimental results, with regard to the canonical solutions.
Section 8 concludes this work by recapping the obtained results and introducing promising directions
for future research.

2. Related Work

According to Section 1, where we implicitly underline the great heterogeneity that characterizes
the intrusion detection domain, in terms of both approaches and strategies, here we discuss some
significant solutions in the literature.

Considering that the proposed strategy is based on the data preprocessing of the original feature
space, it should be noted how this represents a common strategy in a number of works in the literature,
albeit with different criteria. Such data preprocessing can involve many techniques, from the feature
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selection [35] ones, aimed to select a subset of representative features to use during the evaluation
model definition process, to the feature engineering [36] ones, where the data domain knowledge is
exploited to define/redefine features in order to improve the performance. An example of feature
selection technique used in the context of the network anomaly intrusion detection can be found
in [37], where the authors proposed a framework aimed to improve the performance by exploiting a
feature selection technique. An approach based on the mutual information used to perform the feature
selection in the intrusion detection context is defined in [38], whereas an interesting approach that
combines several feature selection algorithms is presented in [39]. Another interesting approaches
of feature selection is presented in [40], where the authors formalize such a technique in terms of a
pigeon-inspired optimizer algorithm, applying it in an intrusion detection scenario. In [41], the feature
selection technique is considered in the context of the big data scenario, since the authors proposed a
penalty-based wrapper objective function to evaluate the feature selection process, whereas, in [42],
the same authors faced the feature selection problem in a high-dimensional data scenario.

Several feature engineering techniques can be found in the current literature; for example, Kasongo
and Sun [43] proposed a deep learning method for the intrusion detection task, based on a feature
engineering process and Wang et al. [44] applied a feature engineering criterion that learns the
hierarchical spatial-temporal aspects of the involved features through deep neural networks, in order
to improve the intrusion detection performance. Recently, an interesting approach is proposed in [45],
where the authors defined a novel feature learning model for cybersecurity tasks. Kunang et al. [46]
proposed an automatic feature extraction technique based on autoencoder (i.e., a type of artificial
neural network aimed to learn efficient data encodings, by following an unsupervised strategy) and
support vector machine for the intrusion detection task. Recently, Ieracitano et al. [47] combined the
autoencoder technique with a statistical analysis, in order to define an intrusion detection approach.

Although they present some overlap, feature selection and feature engineering techniques have
different objectives; however, the proposed strategy operates in a different manner with respect to
both of them. This happens since, instead of performing a selection of the most relevant features or
defining some new ones on the basis of the entire dataset via data mining techniques, we first introduce
new features based on statistical metrics (minimum, maximum, average, and standard deviation),
and then we discretize the value of each feature, reaching a better characterization of each event,
without significant computational efforts.

Both components of the proposed strategy operate synergistically, because the introduction of new
features (a process aimed to improve the event characterization) counteracts the loss of information
related to the data discretization (a process aimed to reduce the potential event patterns). It should
also be observed that the strategy we proposed is not in direct competition with the intrusion detection
approaches in the literature, as its main objective is to improve their intrusion detection performance
by preprocessing the involved data, regardless of the type of algorithm they adopted.

3. Background

To start, we can observe how the literature classifies several types of Intrusion Detection Systems
(IDSs), along with the definition of the intrusion detection concept, which was first introduced by James
Anderson in 1980 [48], and later formalized by Dorothy Denning in 1987 [49]. In the following years,
many works and surveys have deepened and discussed this concept, up to the present day. In 2000,
Axelsson [50] discussed the taxonomy of intrusion detection systems, presenting a survey and their
classification. In 2008, Modi et al. [51] proposed a survey aimed to study how the different intrusions
can affect the availability, confidentiality, and integrity of cloud resources and services. Another
interesting work was presented in 2017 by Zarpel ao et al. [52], who extended the intrusion detection
concept to the IoT scenario, where the authors tried to identify leading trends, open issues, and future
research possibilities, classifying the IDSs formalized in the literature on the basis of several attributes.
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3.1. Intrusion Detection Systems

The main task of an IDS is the analysis and classification of the network activity, which is aimed
to discriminate the normal network events from the intrusion ones. The concept of intrusion can be
related both to a software activity, such as malware [53,54] (e.g., spyware, virus, rootkit, etc.) and to a
human activity [55] addressed to the illegitimate exploitation of network resources.

3.1.1. Operative Ways

Although there are many ways to classify the IDSs, one of the most used in the literature
classifies them into four categories: anomaly-based network IDSs, signature-based network IDSs,
specification-based network IDSs, and Hybrid-based network IDSs. They are summarized as follows:

• Anomaly-based network IDSs, also named behavior-based network IDSs, operate by analyzing
and classifying each network event in two classes, normal or intrusion. Instead of performing
a process of comparison between the new network events and a database that contains the
signatures/patterns related to the known ones, the classification process exploits a heuristic or
rules-based strategy aimed to detect the intrusion in terms of events not attributable to a normal
network activity. It should be noted that, despite the huge research effort in this area, as well as
the huge number of such systems formalized in the literature, problems to be solved continue to
exist [56];

• Signature-based network IDSs, also named knowledge-based network IDSs, operate by comparing
the pattern of each new network event to a database of known signatures/patterns [57]. In [58],
the authors proposed to face the problem related to the significant overheads in terms of memory
usage and execution time related to the signature/pattern matching operation by parallelizing
the process on a multi-core CPU.

• Specification-based network IDSs, also named stateful protocol analysis network IDSs, operate by
knowing and tracing the involved protocol states with the objective to detect unexpected
sequences of commands [59]. The related disadvantages are the computational load that needs
for the protocol state tracing and analysis and their inability to inspect attacks based on the same
behavior of the normal network activities. An example of this category of IDSs can be found
in [60], where the protocol packets are examined to detect malicious payloads.

• Hybrid-based network IDSs operate by mixing the aforementioned approaches with the goal to
improve the detection performance, according to a specific objective/scenario [61]. An example
is the work proposed in [62], where the authors formalized a hybrid of anomaly-based and
specification-based IDS aimed to operate in the context of an IoT environment.

On the basis of the researchers’ experience reported in the literature, the main pros and cons of
the aforementioned approaches are summarized in Table 1.

Table 1. Pros and cons of IDS operative approaches.

Approach Pros Cons

Anomaly-based

Capability to detect zero-days attacks;
effectiveness to detect misuse of privileges;
not completely dependent from the
operating system

Low accuracy given by the high dynamicity
of the network events; latency that does not
allow the system to operate in real-time

Signature-based Able to detect known attacks; provide a
detailed analysis pf the attacks

Inability to detect unknown attacks and
variations of the known ones; inability to
analyze the protocols states; difficulty to
keep updated the signatures/patterns
database; high computational cost
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Table 1. Cont.

Approach Pros Cons

Specification-based
Able to investigate and trace on the
protocol states; capability to detect abuses
in the protocol usage

Inability to detect attacks similar to normal
network activities; high cost in terms of
resources consumed to inspect and trace
the protocols state; it can not work by using
devoted operating systems or devices

Hybrid-based
It depends on the combination and
implementation of the approaches
described above

It depends on the combination and
implementation of the approaches
described above

3.1.2. Operative Placement

A further classification of the IDSs has been made by taking into account their placement in the
network to be protected. In this case, the literature classifies the IDSs into the following four categories:

• Host-based [63]: A Host-based Intrusion Detection System (HIDS) operates by exploiting several
hosts (Figure 2) with the aim to capture the network activity. Each new network event is compared
to the information stored in a database (signatures), and, when an intrusion is detected, the
system responds with a series of countermeasures. The main advantage of such a configuration
is related to the system scalability in terms of possibility to add other hosts to improve the
detection performance. The latency between an intrusion and its detection represents the main
disadvantages, as well as the high number of misidentifications of normal (false positive) and
intrusions (false negative) events.

Figure 2. IDS host-based modality.

• Network-based [64]: A Network-based Intrusion Detection System (NIDS) operates by capturing
and analyzing the whole network activities (Figure 3). Each activity is then compared to the
signatures stored in a database and related to known events (normal and intrusion), and only the
unknown signatures will be analyzed. This hybrid approach (signature-based and analysis-based)
allows us to deal both with known and unknown intrusions (e.g., zero-days attacks). The main
disadvantage in this approach is instead related to its inability to operate proactively, together
with that to operate with encrypted data.
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Figure 3. IDS network-based modality.

• Network-node-based [65]: A Network-Node-based Intrusion Detection System (NNIDS) operates
by positioning the system in a strategic location of the network (Figure 4), and its operative way
is a combination of the HIDS and NIDS strategies; thus, it shares with them the same advantages
and disadvantages.

Figure 4. IDS network-node-based modality.

• Distributed-based [66]: The Distributed-based intrusion detection systems represent hybrid
solutions aimed to combine the aforementioned strategies in order to improve the performance
in a specific network context.

3.1.3. Network Attacks

To place the appropriate countermeasures against the potential network attacks, the researchers
need detailed knowledge of techniques, strategies, and tools used by the attackers. Such information
is easily available, as it is usually in the public domain. On the basis of their behavior and potential
impact on the attacked resources, Table 2 groups the most common ones into several classes.
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Table 2. Common classes of network attacks.

Attack Description References

Denial of Service

The Denial of Service (DoS) and Distributed Denial of Service(DDoS)
represent a class of attacks aimed to reduce/block the legitimate use of
a service by saturating its resources through a huge number of requests
that exceed the response capacity of these

[67,68]

Packet Forging
They are tools focused on the exploitation of the network protocols by
manipulating/forging them, for instance in order to spoof the IP source
address or other crucial elements

[69,70]

Trojan Horses

Trojan horses are malicious software designed to jeopardize/break
network resources, such as a single machine or an entire network. They
are hidden inside a legitimate software and, once executed, perform their
activity

[71,72]

Fingerprinting

The fingerprinting attacks are aimed to discover as many as possible
information about a network protocol implementation and/or network
resource by observing its behavior. Information such as parameters,
vendor, operating system, and version is then used later to define targeted
attacks

[73,74]

Buffer Overflow

This class of attacks exploits a type of bug defined buffer overflow (also
defined buffer overrun), where a targeted program write more data to a
buffer than it can hold, due to the absence of a buffer bounds checking.
Such an operation allows the attacker to execute arbitrary code on the
target system

[75,76]

The aforementioned classes of attacks are exploited in order to conduct dangerous well-known
attacks such as SYN flooding, IP spoofing, session hijacking, man-in-the-middle, DHCP starvation,
and many more [77]. It should be underlined that their intrinsic dangerousness arises from the fact
that many of these attacks do not require any in-depth expertise, since they can be conducted using
tools easily available on the Internet [78]. By exploiting such tools, people can perform a number of
dangerous activities without particular efforts, from those related to the information discovering to
those aimed to the exploitation/block of network resources. In addition, the possibility to operate
these attacks both by using wired and wireless networks [79], makes it even more difficult to identify
those responsible for the attacks.

It can also be observed that many common instruments/tools, which are not precisely classified
as attacks, are able to perform crucial operations in an attack context. Some significant examples
are simple commands such as ping, fping, arping, and traceroute and more sophisticated tools such
as EtherApe [80], able to perform network traffic sniffing [69]. An interesting investigation about
the deep-learning techniques used in order to perform automate security tasks such as the malware
analysis was presented by Singla and Bertino [81].

3.2. Performance Evaluation

The performance evaluation in the context of the IDSs must take into account several aspects,
mainly for the same reason that characterizes other domains, the presence on a high degree of data
imbalance [82,83]. Such a problem is related to the fact that most of the involved network events
belong to one majority class (normal activities). Although the literature reports numerous performance
evaluation metrics in this domain [84], the common choice of most researchers is to combine more than
one of these metrics [85], in order to obtain an evaluation as correct/reliable as possible. Considering
that the IDS task is usually treated as a classification problem, the evaluation metrics taken into
account have to assess the performance in terms of a binary classification in two classes, normal
and intrusion [86]. Some categories of metrics largely used in the IDS context are introduced in
the following:
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• Confusion-matrix based: The IDS evaluation is performed by using the confusion matrix values.
This is a 2× 2 matrix that contains True Negatives (TN), False Negatives (FN), True Positives (TP),
and False Positive (FP), as shown in Table 3, where such a matrix is contextualized in the intrusion
detection context. Some of the metrics (largely used in the intrusion detection domain) derived
from that matrix are the Matthews correlation coefficient, F-score, sensitivity, and specificity [84].

Table 3. Confusion matrix.

Predicted

Normal Intrusion

Actual Normal TP FN
Intrusion FP TN

• ROC-Curve based: The IDS evaluation is performed on the basis of the Receiver Operating
Characteristic (ROC) curve, where one of the most used derived metrics is the Area Under the
Receiver Operating Characteristic (AUC), which is able to assess the capability of an IDS to
discriminate the normal events form the intrusion ones, regardless the level of data imbalance,
correctly [87].

• Additional Metrics: Other metrics are instead adopted when the problem is expressed in terms of
regression instead of classification, such as the Root Mean Square Error (RMSE) and the Mean
Absolute Error (MAE) [88]. Different metrics are also aimed to evaluate secondary aspect of an
IDS, taking into account, for instance, its performance in terms of computational load, memory
usage, etc. [89,90].

4. Formal Notation and Problem Formulation

We denote as E the set of classified network events, which is composed by the subset E+ ⊆ E of
the events classified as normal and the subset E− ⊆ I of those classified as intrusion, while we define
as Ê the set that contains the network events to classify. Each event is characterized by a series F of
features, and it can belong to only one of the two classes in set C. Such an aforementioned formalization
is recapped and detailed in Table 4.

Table 4. Formal notation.

Notation Description Note

E = {e1, e2, . . . , eX} Set of classified events
E+ = {e+1 , e+2 , . . . , e+Y } Subset of normal events E+ ⊆ E
E− = {e−1 , e−2 , . . . , e−W} Subset of intrusion events E− ⊆ E
Ê = {ê1, ê2, . . . , êZ} Set of unclassified events

F = { f1, f2, . . . , fN} Set of event features
C = {normal, intrusion} Set of event classifications

Problem Formulation

On the basis of the previous formal notation, by denoting as λ the classification process performed
by the proposed LFE strategy and as Evaluate(ê, λ) an evaluation function that returns 1 in case of
correct classification or 0 otherwise, we can formalize our goal in terms of maximization of the sum Ω
of its results, as shown in Equation (1):

max
0≤Ω≤|Ê|

Ω =
|Ê|

∑
z=1

Evaluate(êz, λ) (1)

In agreement with most of the literature in this area, we consider the intrusion detection in terms
of a binary classification task, where the two mutually exclusive classes of destination for each analyzed
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event are normal or intrusion, according to the set of event classifications previously formalized in
Table 4.

5. Proposed Strategy

The Local Feature Engineering (LFE) strategy proposed in this work introduces a series of new
features in the set of features F that characterizes each network event. The addition of new features is
then followed by a discretization process [91] applied on them, which is aimed to reduce the number
of potential event patterns, since the result is the aggregation of the similar ones.

Since the computational complexity related to the definition of a classification model in the
intrusion detection domain [92] is proportional both to its feature space (in terms of number of
features) and its data (in terms of number of events), such a pattern reduction has a positive effect to
the computational load.

The high-level architecture of the proposed LFE strategy is shown in Figure 5. It indicates how
such a strategy is based on two different data paths: the first one is related to the preprocessing of set
E (classified events) and set Ê (unclassified events) through the LFE strategy (i.e., feature addition
and values discretization), whereas the second one is aimed to detect the optimal δ value to use for
the previously mentioned discretization process. This process is denoted as �, and it is performed by
using only E. As last step, the evaluation model is trained by using set E, previously preprocessed
according to the δ value we defined. The unevaluated events in set Ê, whose features have also been
preprocessed by using the same δ value, are then classified on the basis of the defined evaluation
model. All the implementation details are reported in Sections 5.1 and 5.2.

Original
Datasets

Features
Addition

Features
Discretization

Model
Training

Classification

Features
Addition

Features
Discretization

ÊE

Classi f ied(Ê)

ÊE

ÊE

E

E

δ

Ê

Figure 5. LFE high-level architecture.

5.1. Feature Engineering

The addition of new features that characterizes the proposed LFE strategy falls into the literature
background as a feature engineering process. Feature engineering is defined as a process aimed to
improve the performance of a predictive model by exploiting the transformation of the original feature
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space [36]. An example can be found in [93], where the authors proposed a technique for automating
feature engineering in classification task.

The process adopted in our approach is very close to this operative way, but, instead of
transforming raw data into features, with the goal to better represent the data in the definition
of a predictive model, it exploits the original features to defines the additional ones. The idea behind
this choice is that there are normal and intrusion patterns that are very similar, and the addition of
discriminant elements (i.e., the new features) is able to better differentiate them, allowing the prediction
model to perform more reliable classifications. The new features are calculated on the basis of the
existing ones and their aim is a better characterization of the event in the two considered classes
(i.e., normal and intrusion).

The new features are calculated on the basis of some metrics (that are described below), with
the result formalized in Equation (2), where {e1, e2, . . . , eX} denotes the set of original event features,
{m1, m2, . . . , mY} denotes the set of the new ones, and the new feature vector F̂ is given by the
concatenation of these two sets.

F̂ = f1 f2 . . . fN _ mN+1 mN+2 . . . mN+O (2)

This process is applied on each instance e and ê, which are characterized by the features in set
F, respectively, related to the set of the evaluated instances in set E and the unevaluated ones in set
Ê. In more detail, denoting as µ = {m1, m2, m3, m4} the new features to add to set F, they are defined
using the following calculation criteria: m1 = Minimum, m2 = Maximum, m3 = Average, m4 = Standard
Deviation, as formalized in Equation (3).

µ =



m1 = min( f1, f2, . . . , fN)

m2 = max( f1, f2, . . . , fN)

m3 =
1
N ∑N

n=1( fn)

m4 =
√

1
N−1 ∑N

n=1( fn − f̄ )2

(3)

5.2. Feature Discretization

The feature discretization process is instead a process that the literature describes as the conversion
of the feature values into a categorical one [94], for instance in order to allow us the use of classification
algorithms unable to operate with continuous feature values [95], as well as to reach a better data
understandability. The loss of information, which represents a disadvantage of the discretization process,
is balanced by the proposed strategy through the addition of new features previously described.

As previously emphasized in Section 2, the feature discretization process should be considered as
a synergistic component of the proposed LFE strategy, since it reduces the potential event patterns,
while the introduction of new features (the other LFE component) counteracts the loss of information,
which represents a side effect of a discretization process.

In more detail, this process divides the value of each feature into a discrete number of
non-overlapped intervals, mapping the original numerical value (continuous or discrete) into one
of the intervals of a defined range. Such a process is shown in Figure 6, which exemplifies it by
considering a conversion of feature values from its original range [0, 100] into a discrete range
{0, 1, . . . , 60}. The resulted values {12, 30, 7, 54, 42, 60} then represent the discretization of the source
values {10.60, 28.78, 5.20, 52.11, 41.00, 92.11}.

The feature engineering described above extends the original feature space F into the new
feature space F̂ (by adding the four calculated values in set µ). Then, this feature space (i.e.,
{ f1, f2, . . . , fN , m1, m2, m3, m4}) is further processed by discretizing all the feature values (continuous
or discrete) according to a defined range {d1, d2, . . . , dδ}, experimentally defined.
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Figure 6. Data discretization process.

Denoting as f δ−→ d the function of discretization, this process is formalized in Equation (4), where
for simplicity we denote (from now on) the resulted set again as F, according to the formal notation
provided in Section 4. It should be noted that this process is performed for each event e ∈ E and for
each event ê ∈ Ê, respectively, the training set and the set to evaluate.

F̂ = { f1, f2, . . . , fN , fN+1, fN+2, fN+3, fN+4}
↓ δ

F = {d1, d2, . . . , dN , dN+1, dN+2, dN+3, dN+4}
(4)

5.3. Data Model

The feature engineering and discretization processes generate a new data model, which is used
during both training and classification operations. Its formalization is shown in Equation (5), where
for simplification reasons we refer only to set E. (i.e., the set that contains the evaluated events used
for the evaluation model training). This means that the same formalization is also valid for set Ê (i.e.,
the set that contains the unevaluated events to classify).

E =

d1,1 d1,2 . . . d1,N m1,N+1 m1,N+2 m1,N+3 m1,N+4

d2,1 d2,2 . . . d2,N m2,N+1 m2,N+2 m2,N+3 m2,N+4

...
...

. . .
...

...
...

. . .
...

dX,1 dX,2 . . . dX,N mX,N+1 mX,N+2 mX,N+3 mX,N+4

(5)

5.4. Event Classification

Algorithm 1 here formalized has been designed to exploit the new data model, defined on the
basis of the proposed LFE strategy.

In more detail, the algorithmic formalization of Steps 2 and 3 of Algorithm 1, which refers to the
application of the LFE strategy, is shown in Algorithm 2.

Algorithm 1 takes as input a classifier cl f , the set of classified events E, the set of events to classify
Ê, and a value δ that defines the range of discretization, which is defined experimentally. It returns the
classification of all events in set Ê. The data transformation is performed at Steps 2 and 3, as detailed in
Algorithm 2, where the addition of the four new features (Step 4), calculated as described in Section 5.1,
is followed by the discretization of the feature values (Step 5), and the new data model is returned at
Step 8.
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Algorithm 1 LFE events classification
Input: cl f =Classifier, E=Classified events, Ê=Events to classify, δ=Range of discretization
Output: out=Classification of events in Ê
1: procedure EVENTSCLASSIFICATION(cl f , E, Ê)
2: E′′ ← DataTrans f ormation(E, δ) . LFE data transformation
3: Ê′′ ← DataTrans f ormation(Ê, δ) . LFE data transformation
4: model ← Classi f ierTraining(cl f , E′′) . Evaluation model training
5: for each ê′′ ∈ Ê′′ do . Processes all the events in Ê
6: c← getEventClass(model, ê′′) . Event classification
7: out.add(c) . Stores classified events
8: end for
9: return out . Returns classification of event in Ê

10: end procedure

Algorithm 2 LFE data transformation
Input: DB1t=Set of data to transform, δ=Range of discretization
Output: DB2=Transformed set of data in agreement with the LFE strategy
1: procedure DATATRANSFORMATION(DB1, δ)
2: for each event ∈ DB1 do
3: F ← getFeatures(event) . Get event features
4: F.add(Features(m1, m2, m3, m4) . Add new features
5: F = discretizeData(F) . Discretize feature values
6: DB2.add(F) . Add processed event features
7: end for
8: return DB2 . Returns transformed dataset
9: end procedure

The classifier cl f model training is then performed at Step 4 of Algorithm 1 by using the new
data model, whereas the classification of each event in set Ê is performed at Steps 5–8, and the results
returned at Step 9 of the same algorithm.

Computational Complexity

Here, we evaluate the computational complexity related to the proposed LFE strategy, since
this provides important information in the context of real-world applications. Such an evaluation
was made by analyzing the theoretical complexity of the events classification (Algorithm 1) and the
events features transformation (Algorithm 2), as previously formalized. The complexity is expressed
according to the Big O notation [96], which is aimed to define the upper bound of an algorithm, since it
bounds a function only from above.

As a premise, considering that our experiments involve different classification algorithms, and that
the proposed strategy has been designed to operate regardless of the adopted algorithm, we do not
take into account in this evaluation the classification algorithm complexity [97].

Generalizing as n the total number of events to process, Table 5 reports the significant steps of
Algorithm 1, along with the involved single components complexity, and the final Big O complexity
that derives from them.

Table 5. LFE computational complexity.

Step Components Complexity Global Complexity

Step 2 O(n)×O(1)×O(1)×O(1) O(n)
Step 3 O(n)×O(1)×O(1)×O(1) O(n)
Steps 5−8 O(n)×O(1) O(n)

By carrying out a more detailed analysis of the operations involved in Algorithm 1 components,
according to the complexity analysis presented in Table 5, we can observe the following.
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• Steps 2 and 3 of Algorithm 1 are related to the operation performed by Algorithm 2, where, in the
main loop, the original feature F are extracted from the processed event in a constant time O(1),
as well as the addition of the four new features m1, m2, m3, m4, and the storing of the extended
feature space. The dominant complexity O(n) related to the main loop represents the the global
complexity of all the involved operations.

• Steps 5–8 of Algorithm 1 are related to the loop where the event classification is performed by
exploiting the evaluation model trained in Step 4. The dominant complexity of this loop is O(n),
since the storing of the classifications take a constant time O(1).

• The complexity related to the adopted algorithm of classification, training and classification time,
is not taken into consideration for the reasons discussed above. This trivially means that the
final complexity of the proposed LFE strategy is defined by considering the upper bound O(n)
complexity that characterizes the proposed strategy and the complexity of the adopted algorithm.

• In any case, it should be observed that the complexity can be further reduced by parallelizing
the process on several machines, for instance using large-scale distributed computing models,
such as MapReduce [98–100].

6. Strategy Validation

The environment used to validate the proposed LFE strategy was based on the following hardware
and software: a single machine quad-core Intel i7-4510U, 2.00 GHz CPUs, 12 GB of RAM; a Linux-based
operating system (kernel 3.16.0-amd64); and Python programming language with the Scikit-learn
(http://scikit-learn.org) library.

Note that, to grant the experiments reproducibility, the seed of the pseudo-random number
generator in Scikit-learn was fixed to 1.

6.1. Dataset

The main real-world dataset we used in the validation process is the NSL-KDD dataset (https://
github.com/defcom17/NSL_KDD). It essentially represents an improved version of the KDD-CUP99
dataset widely used in the past, which suffered from some issues [101]. In more detail, the main
improvements of the NSL-KDD dataset, with regard to the original KDD version, are the following:

• The redundant records in the training set have been removed to avoid that a classifier can be
biased by the frequency of them.

• The duplicate records in the test sets have been removed to avoid that a classifier performance
can be biased when the better detection rate of it is related to these records.

• The new number of records in the training and test sets allows a classifier to perform the validation
process without the need to select small portions of them, randomly.

The NSL-KDD dataset was selected since it is considered as a benchmark in the intrusion detection
research area, allowing the researchers to compare their solutions performance with an ever-increasing
number of works in this field, unlike other recent datasets. Moreover, we chose this dataset for the
network scenario it provides, as we aimed to assess our performance in the context of canonical
networks. The NSL-KDD dataset involves events related to the UDP, TCP, and ICMP protocols,
allowing to validate approaches and strategies in a real-world network scenario, in terms of both
number of events and involved protocols and attacks.

We adopted this dataset to perform an independent experimental evaluation of the proposed
strategy by intrusion typology, separately. On the other hand, in Section 7.1, we take into account two
additional datasets, with the aim to evaluate such a strategy in heterogeneous scenarios (i.e., which
include all types of attacks).

The numerical relevance of the NSL-KDD dataset in terms of normal and intrusion events
(respectively, E+ and E−) is reported in Table 6. Note that the original dataset consists of two different

http://scikit-learn.org
https://github.com/defcom17/NSL_KDD
https://github.com/defcom17/NSL_KDD
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files, i.e. KDDTrain+ and KDDTest+, respectively, related to the original training and test sets, as defined
by the dataset authors. However, since some normal/intrusion unique events can be found in one file
only, we discarded this original separation, and joined the two files as a unique full dataset for the
rest of this section, thus only considering the global values IN Table 6 (here, the original distinction
between KDDTrain+ and KDDTest+ is reported for information purposes).

Table 6. Numerical relevance of the original dataset events.

Dataset Total Events Normal Intrusion Features Unique
|E|+ |Ê| |E+| |E−| |F| Events

KDDTrain+ 125, 973 67, 343 58, 630 41 23
KDDTest+ 22, 543 9, 710 12, 833 41 38

Global 148, 516 77, 053 71, 463

The distribution of the network events is provided in Table 7, while their classification in the
five classes (i.e., PEA, DSA, RSA, RAA, and NNA) is detailed in Table 8. Finally, Table 9 presents a
numerical overview of the aforementioned classes of dataset events.

Table 7. Distribution of dataset events.

Network Event Occurrences Class Network Event Occurrences Class

01 apache2 737 DSA 21 processtable 685 DSA
02 back 1315 DSA 22 ps 15 PEA
03 buffer_overflow 50 PEA 23 rootkit 23 PEA
04 ftp_write 11 RAA 24 saint 319 RSA
05 guess_passwd 1283 RAA 25 satan 4368 RSA
06 httptunnel 133 RAA 26 sendmail 14 RAA
07 imap 12 RAA 27 smurf 3311 DSA
08 ipsweep 3740 RSA 28 snmpgetattack 178 RAA
09 land 25 DSA 29 snmpguess 331 RAA
10 loadmodule 11 PEA 30 sqlattack 2 PEA
11 mailbomb 293 DSA 31 spy 2 RAA
12 mscan 996 RSA 32 teardrop 904 DSA
13 multihop 25 RAA 33 udpstorm 2 DSA
14 named 17 RAA 34 warezclient 890 RAA
15 neptune 45, 871 DSA 35 warezmaster 964 RAA
16 nmap 1566 RSA 36 worm 2 DSA
17 perl 5 PEA 37 xlock 9 RAA
18 phf 6 RAA 38 xsnoop 4 RAA
19 pod 242 DSA 39 xterm 13 PEA
20 portsweep 3088 RSA 40 normal 77, 053 NNA

Table 8. Classes of dataset events.

Class Description Target

PEA Privilege Escalation Attack
Gains a privileged access as unprivileged user (e.g., Buffer
overflow, Loadmodule, Rootkit, Perl, Sqlattack, Xterm,
and Ps).

DSA Denial of Service Attack

Puts out of service a service/system through a number of
normal activities (e.g., Back, Land, Neptune, Pod, Smurf,
Teardrop, Mailbomb, Processtable, Udpstorm, Apache2,
and Worm).

RSA Remote Scanning Attack
Obtains information on services/systems by using
invasive and non-invasive techniques (e.g., Satan,
IPsweep, Nmap, Portsweep, Mscan, and Saint).
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Table 8. Cont.

Class Description Target

RAA Remote Access Attack

Gets an access to a remote system by using several
techniques (e.g., Guess_password, Ftp_write, Imap, Phf,
Multihop, Warezmaster, Xlock, Xsnoop, Snmpguess,
Snmpgetattack, Httptunnel, Sendmail, and Named).

NNA Normal Network Activity This is the class we used in order to identify the normal
network events).

Table 9. Event categories numerical overview.

PEA DSA RSA RAA NNA
Events Events Events Events Events

Total 119 53, 387 14, 077 3879 77, 053
% 0.08 35.95 9.48 2.61 51.88

6.2. Metrics

We adopted three different metrics, in the validation process, to evaluate the performance of the
proposed LFE strategy: (i) the specificity [102]; (ii) the Matthews Correlation Coefficient (MCC) [103,104];
and (iii) the Area Under the Receiver Operating Characteristic curve (AUC) [105].

The first two are based on the results related to the confusion matrix described in Section 3.2,
whereas the last one is related to the Receiver Operating Characteristic (ROC) curve. The combination
of these metrics provides us a reliable evaluation of the strategy effectiveness, regardless to data
imbalance (i.e., the numerical difference between normal and intrusion events), according to the
literature in this research area.

• The formalization of the specificity metric, which is aimed to assess the performance in terms of
the system capability to detect intrusions (i.e., the true negative rate), is shown in Equation (6),
according to the formal notation provided in Section 4. Denoting as Ê the unclassified instances,
TN reports the number of events classified as intrusion, correctly, and FP reports the number of
intrusion events classified as normal, erroneously.

Speci f icity(Ê) =
TN

(TN + FP)
(6)

• The formalization of the MCC metric, which respect to other confusion-matrix metrics is able
to operate even with unbalanced data, is shown in Equation (7). It provides a result in the
[−1,+1] range, where the correctness of all the performed classification leads to +1, whereas the
incorrectness of all of them leads to −1, and 0 indicates the typical performance reached by a
random classifier.

MCC(Ê) =
(TP · TN)− (FP · FN)√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
(7)

• The formalization of the AUC metric, which is able to evaluate the capability of a classifier to
differentiate the normal from the intrusion events, regardless their numerical imbalance, is shown
in Equation (8). Given set E, denoting as κ all the possible score comparisons related to each event
e, the final result (in the [0, 1] range) is given by the average of them, where 1 indicates the best
classification performance.
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AUC =
1

I+ · I−

|I+ |

∑
1

|I− |

∑
1

κ(i+, i−) with κ(i+, i−) =


1, i f i+ > i−

0.5, i f i+ = i−

0, i f i+ < i−

(8)

6.3. Algorithms

To validate the performance of the proposed LFE strategy, its effectiveness was evaluated in the
context of a series of largely used state-of-the-art classification algorithms, whose performance has
been measured before and after the application of the proposed strategy in the datasets. They are
Gradient Boosting (GB), Adaptive Boosting (AB), Random Forests (RF), Multilayer Perceptron (MP),
and Decision Tree (DT). A brief description of how each algorithm works is shown below. Let us
observe that, actually, a fine-tuning of the algorithms is not a crucial constraint, since the main objective
of the proposed LFE strategy is the improvement of an algorithm performance, regardless of its
optimal configuration. For these reasons, we selected default parameters for the considered algorithms,
identical for each single run of the experiment, hence without the necessity of using a validation set.
Such a default parameter configuration is reported, for each algorithm, in Table 10.

• Gradient Boosting: It is used to face regression and classification tasks. Its evaluation model is
based on an ensemble of weak prediction models such as decision trees, which is exploited to
produce the final predictions. Its way to operate is based on continuous exploitation of a weak
learning method in order to obtain a sequence of hypotheses, which are reused on the difficult
cases, with the aim to improve the classification performance. Some significant works in the
intrusion detection area that exploit this algorithm can be found in [14,106].

• Adaptive Boosting: Similar to gradient boosting, it works by combining multiple weak classifiers in
order to obtain a strong one. Its way to operate relies on the consideration that the single classifiers
may not reach to perform the classification, accurately, and thus they are grouped, and each of
them learns from the other ones, progressively. Some significant works in the intrusion detection
area that exploit this algorithm can be found in [15,107].

• Random Forests: It is based on many decisions trees. Bagging and feature randomness when
building each individual tree are used in order to define an uncorrelated forest of trees, which
leads to best performance of classification, with respect to a single tree. Some significant works in
the intrusion detection area that exploit this algorithm can be found in [108,109].

• Multilayer Perceptron: It belongs to the class of feed-forward Artificial Neural Network (ANN),
working using at least three layers (input, hidden, and output), It uses a supervised learning
back-propagation technique, exploiting a non-linear activation function (except for the input
nodes). Some significant works in the intrusion detection area that exploit this algorithm can be
found in [17,110].

• Decision Tree: It represents a supervised machine learning approach aimed to induct a decision
tree by starting from the training data. Such a decision tree is a model that relates the information
about an item to a target classification. Some significant works in the intrusion detection area that
exploit this algorithm can be found in [17,111].
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Table 10. Algorithms parameters.

Classification Algorithm Parameters Values

Gradient Boosting

criterion=’friedman_mse’, init=None, learning_rate=0.1, loss=’deviance’,
max_depth=3, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100,
presort=’auto’, random_state=1, subsample=1.0, verbose=0, warm_start=False

Adaptive Boosting algorithm=’SAMME.R’, base_estimator=None, learning_rate=1.0,
n_estimators=50, random_state=1

Random Forests

bootstrap=True, class_weight=None, criterion=’gini’, max_depth=None,
max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False,
random_state=1, verbose=0, warm_start=False

Multilayer Perceptron

activation=’relu’, alpha=0.0001, batch_size=’auto’, beta_1=0.9, beta_2=0.999,
early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100,),
learning_rate=’constant’, learning_rate_init=0.001, max_iter=200,
momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=1,
shuffle=True, solver=’adam’, tol=0.0001, validation_fraction=0.1, verbose=False,
warm_start=False

Decision Tree

class_weight=None, criterion=’gini’, max_depth=None, max_features=None,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=1, splitter=’best’

6.4. Modality

Following the LFE strategy high-level architecture presented in Figure 5, we first transformed
the classification of the events of the full dataset from categorical into numeric ones (i.e., by using 0 to
classify the normal events and 1 to classify the intrusion ones).

Then, since the proposed strategy needs the experimental definition of the δ value to use in the
context of the discretization process, we split the dataset into two subsets of same dimension, to avoid
data dependency during the experiments:

• The first one, called in-sample subset, was used to perform a k-fold cross-validation (with k = 5),
to find the optimal δ value for each category (recall that we used default algorithm parameters;
however, a fine-tuning of such parameters can be eventually done at this stage). The optimal
values of δ are shown in Table 11.

• The second one, called out-of-sample subset, was used to perform multiple runs of the
pre-trained algorithms (with the previously chosen δ values), on unseen test data, to get the
experimental results.

To find the optimal δ for each algorithm–event category pair, we iterated δ over the range
(1, MAX], with MAX empirically set to 300. In addition, note that, according to the problem
formulation made in Section 4, the intrusion detection task is performed as a binary classification
problem, since each event can be classified only as normal or intrusion, as already anticipated in the
formal notation provided in Section 4. This follows what has been done by most of the works in the
intrusion detection literature. However, the assessment of the performance related to each single class
of events, instead of considering them as a whole, allows us to get information about the behavior of
the LFE strategy in each attack scenario, separately.
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Table 11. NSL-KDD dataset—optimal δ value detection.

Dataset Algorithm δ Value Dataset Algorithm δ Value

AB 12 AB 71
DT 120 DT 73

DSA GB 27 RAA GB 250
MP 7 MP 247
RF 6 RF 89

AB 125 AB 148
DT 158 DT 187

NNA GB 135 RSA GB 221
MP 112 MP 138
RF 77 RF 118

AB 171
DT 157

PEA GB 47
MP 70
RF 123

7. NSL-KDD Results

The experimental results related to the process of comparison between the proposed strategy and
the canonical use (baseline) of the state-of-the-art classification algorithms (i.e., without the LFE data
preprocessing) in the context of the NSL-KDD dataset, are reported in Table 12. In this first view of
the results, the performance is expressed in terms of the average value between all the adopted three
metrics of evaluation (i.e., specificity, MCC, and AUC), in a similar way to what has been done in other
studies [112], and the better average performance of the LFE strategy is denoted with +.

Table 12. NSL-KDD dataset—-LFE strategy performance comparison.

Dataset Classification Baseline LFE Strategies p-Value
Category Algorithm Performance Performance Comparison

AB 0.9759 0.9774 + <0.01
DT 0.9762 0.9811 + <0.01

DSA GB 0.9787 0.9796 + <0.01
MP 0.9274 0.9719 + <0.01
RF 0.9767 0.9762 - 0.04

AB 0.9225 0.9226 + <0.01
DT 0.9542 0.9535 - <0.01

NNA GB 0.9424 0.9453 + <0.01
MP 0.8326 0.9317 + <0.01
RF 0.9580 0.9523 - <0.01

AB 0.6314 0.6412 + <0.01
DT 0.5385 0.6369 + <0.01

PEA GB 0.6317 0.6512 + <0.01
MP 0.2703 0.5232 + <0.01
RF 0.5399 0.6222 + 0.07

AB 0.8615 0.8758 + <0.01
DT 0.8841 0.8655 - 0.18

RAA GB 0.8820 0.8855 + <0.01
MP 0.6005 0.8534 + <0.01
RF 0.8802 0.8681 - 1.00

AB 0.9515 0.9324 - <0.01
DT 0.9303 0.9436 + <0.01

RSA GB 0.9404 0.9444 + <0.01
MP 0.8498 0.9219 + <0.01
RF 0.9349 0.9425 + 0.20
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The statistical significance of the results was assessed through a five by two-fold cross-validation
paired t-test [113]. Thus, we calculated the t-values for each dataset-algorithm pair, by considering a
two-tailed t distribution with five degrees of freedom. We then considered as significant, with a 0.05
significance level, each strategy comparison (between our LFE approach and the baseline one) where
t > 2.57. We then computed and reported the resulting p-values, as shown in Table 12.

These results led us to reject the null hypothesis for almost every considered pair, with the
exception of seven cases out of 35, four out of 25 in the NSL-KDD dataset (Table 12) and three out of 10
in the CIC and UNS datasets, which are used and described in Section 7.1, as shown in Table 13, where
the difference between us and the baseline is not statistically relevant.

Table 13. LFE strategy performance comparison—additional datasets.

Dataset Classification Baseline LFE Strategies p-Value
Category Algorithm Performance Performance Comparison

AB 0.9741 0.9539 − <0.01
DT 0.9631 0.9636 + 0.06

CIC GB 0.9799 0.9736 − <0.01
MP 0.7653 0.9153 + <0.01
RF 0.9783 0.9788 + 0.03

AB 0.9354 0.9317 − <0.01
DT 0.9173 0.9206 + 0.56

UNS GB 0.9333 0.9225 − <0.01
MP 0.5504 0.7558 + <0.01
RF 0.9214 0.9310 + 0.15

Furthermore, the table also reports the mean performance related to each of the evaluation metrics,
measured in the out-of-sample subset with regard to each classification algorithm, whereas the results
related to each metric are reported in Figures 7–9.

Finally, Figures 10 and 11 show the overall mean performance in relation to all the classification
algorithms, and in related to all the involved classes of events are shown, respectively.
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Figure 7. NSL-KDD dataset—specificity mean performance.
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Figure 11. NSL-KDD dataset—overall mean performance in relation to all events.

7.1. Heterogeneous Network Scenarios

The previous validation process of the proposed LFE strategy, performed in relation to each
category of events in the NSL-KDD dataset, is here extended with further experiments, which were
carried out on other two datasets that involve new classes of devices and events. Differently to what
we have done for the NSL-KDD dataset, where the analysis was focused on the goal to perform an
in-depth evaluation of the LFE strategy behavior with regard to specific network events, here we
consider these datasets in their entirety, with the aim to simulate a real-world exploitation of the LFE
strategy, in order to offer an overview in terms of average performance, with respect to heterogeneous
network scenarios.

The additional datasets that we used to this purpose are publicly available, and are the following:

• CICIDS2017 [114]: This dataset (hereafter, CIC) involves network activity based on the HTTP,
HTTPS, FTP, SSH, and email protocols, related to normal events and several intrusion attacks
such as Brute Force SSH, Brute Force FTP, Denial of Service, Infiltration, Heartbleed, Web Attack,
Botnet, and Distributed Denial of Service. It is freely downloadable from the Internet (https:
//www.unb.ca/cic/datasets/ids-2017.html).

• UNSW-NB15 [115]: This dataset (hereafter, UNS) was created in the Cyber Range Lab of the
Australian Centre for Cyber Security (ACCS) (https://www.unsw.adfa.edu.au/unsw-canberra-
cyber/cybersecurity/ADFA-NB15-Datasets/). It contains nine different types of attacks: Fuzzers,
Analysis, Backdoors, Denial of Service, Exploits, Reconnaissance, Shellcode, Worms, and Generic.

The optimal values of δ, shown in Table 14, have been detected by following the same criteria
reported in Section 6.4, as well as the adopted metrics and algorithms, which are the same as those
previously described, respectively, in Sections 6.2 and 6.3.

The experimental results related to these datasets are shown in Table 13.

Table 14. Optimal δ value detection—additional datasets.

Dataset Algorithm δ Value Dataset Algorithm δ Value

AB 256 AB 259
DT 100 DT 239

CIC GB 150 UNS GB 246
MP 217 MP 12
RF 273 RF 239

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
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7.2. Discussion

The experimental results reported in Tables 12 and 13, together with those shown in Figures 7–11,
lead to the following considerations:

• The average performance between all the adopted metrics shows how the proposed LFE strategy
is able to outperform the canonical use of the classification algorithms, which do not involve the
LFE data preprocessing, as demonstrated by the results presented in Tables 12 and 13, where,
respectively, the LFE strategy outperforms the canonical solutions in 19 cases out of 25, and 6
cases out of 10.

• Such improvements are also evident by observing Figures 7–9, where the performances related to
all the subsets of events in the NSL-KDD dataset are evaluated with regard to each algorithm
of classification.

• Another important aspect of the experimental results is related to the LFE capability to better
operate in the context of different scenarios, since the out-of-sample subset of the NSL-KDD
dataset involves both different type of events and different data configurations, according to the
dataset characteristics reported in Table 9.

• Such a capability also emerges from the results of the experiments presented in Section 7.1, where
the performance of the proposed LFE strategy was evaluated on additional datasets characterized
by heterogeneous events.

• It should be noted that all the used metrics of evaluation (i.e., specificity, MCC, and AUC) are
focused on the assessment of the LFE capability to detect, correctly, the intrusion events, and that
their combination, together with the adoption of a k-fold cross-validation criterion, offers a
reliable evaluation not significantly biased by problems such as data unbalance (MCC and AUC
evaluations) or overfitting (cross-validation).

• The aforementioned considerations are supported by the fact that, in addition to the specificity,
we evaluated the results in terms of MCC and AUC metrics, which are able to assess the ability to
discriminate the two possible final classifications of the events, normal and intrusion.

• Another interesting aspect of the experimental results is related to the capability of the LFE
strategy to improve the canonical classification performance, regardless the implemented
algorithm, also by considering that such a strategy has been adopted, by using the same algorithm
parameters used by the canonical classification solutions;

• As far as the cases where the increase in performance appears less significant are concerned,
it should be considered that a typical activity of an IDS involves a huge number of classification;
thus, in this case as well, the improvement can be considered a very important milestone.

• The LFE strategy has proven capable of improving the performance of the canonical algorithms
largely used in this domain, showing its effectiveness in a number of different real-world scenarios,
since it has been evaluated with a different number of events, as well as with different type of
events, and different distribution of normal and intrusion events.

• The information shown in Figure 10, which reports the overall mean performance in relation to
all the algorithms, offers us the measure of how much the proposed strategy is able to improve
the average performance in the context of the most used algorithms in the intrusion detection
literature, showing the benefits of applying the LFE strategy.

• In a similar manner, as shown in Figure 11, it provides information about the overall mean
performance related to each algorithm used in all the different subset of events (i.e., PEA, DSA,
RSA, RAA, and NNA), indicating a general improvement that in some cases (e.g., the MP
algorithm) is really significant.

• The experiments we performed in detail for each category of events (NSL-KDD dataset), along
with the additional ones we performed on several datasets characterized by heterogeneous
network events (CIC and UNS datasets), proved again the effectiveness of the proposed LFE
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strategy, as in most cases it has been able to improve the performance of the state-of-the-art
algorithms taken into consideration.

• In light of the previous considerations based on the experimental results, we can conclude that the
validation process demonstrates that the proposed LFE strategy can be profitably used in order to
improve the classification performance of the canonical algorithms largely used in the intrusion
detection literature, suggesting a possible exploitation also in those solutions that involve more
than a single algorithm, e.g. those based on hybrid approaches or ensemble ones.

8. Conclusions and Future Directions

Today’s scenario of modern societies, heavily dependent on the use of an ever-increasing number
of network-based services, private and public, generates a huge number of network events related
to these activities, which security systems, such as the IDSs, should process as quickly as possible.
Unfortunately, the requested short response time in terms of events classification should go hand in
hand with its reliability, since a wrong events classification leads toward a series of problems, both case
of both false positives and false negatives (i.e., intrusions identified as normal events and vice versa).

For these reasons, the research activity in this area involves a large number of people and capital,
with the aim to develop effective techniques and strategies able to face the problem. The challenges
are mainly related to some open problems that affect this field, such as a data domain characterized by
a high degree of data imbalance and the heterogeneity/dynamism of the involved network events.

The idea behind the LFE strategy proposed in this work revolves around the observation that
an improvement in terms of event characterization given by the introduction of several new features,
locally calculated for each network event on the basis of the original ones, combined with a process
of discretization of all feature values, can lead to an improvement of the performance related to the
canonical algorithm of classification largely adopted in this field. This kind of feature engineering
process was validated by using real-world data, and the experimental results indicate its effectiveness,
regardless of the involved algorithms and the type of events taken into account.

On the basis of the achieved improvements, the present work inspires some future research
directions, in order to define additional intrusion detection approaches based on more sophisticated
solutions, such as those based on hybrid-based or ensemble-based approaches, which involves more
than a single algorithm of classification.

As a final note, we would like to point out that we did not consider sophisticated data
pre-processing techniques, since our objective is to demonstrate the LFE strategy capability to improve
the baseline algorithms performance without computational efforts, as this effect suggests an ability to
also improve more complex approaches. Part of our future research will be oriented in this direction,
together with the adoption of other datasets that involve different network scenarios such as Internet
of Things (IoT), Industrial Internet of Things (IIoT), Internet of Health Things (IoHT), and so on.
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