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Abstract: Financial markets forecasting represents a challenging task for a series of reasons, such as the
irregularity, high fluctuation, noise of the involved data, and the peculiar high unpredictability of the
financial domain. Moreover, literature does not offer a proper methodology to systematically identify
intrinsic and hyper-parameters, input features, and base algorithms of a forecasting strategy in order
to automatically adapt itself to the chosen market. To tackle these issues, this paper introduces a fully
automated optimized ensemble approach, where an optimized feature selection process has been
combined with an automatic ensemble machine learning strategy, created by a set of classifiers with
intrinsic and hyper-parameters learned in each marked under consideration. A series of experiments
performed on different real-world futures markets demonstrate the effectiveness of such an approach
with regard to both to the Buy and Hold baseline strategy and to several canonical state-of-the-art
solutions.

Keywords: financial market forecasting; ensemble strategy; machine learning; Independent
Component Analysis

1. Introduction

Nowadays, financial markets represent the backbone of the modern societies, as the world
economy is closely related to their behavior [1]. In this context, the investors play a main role, since
their decisions drive the financial markets. Differently from the past, nowadays there are several
information and communication technologies that have been employed within the financial domain,
so investors are now supported by many artificial intelligence instruments that help them to take
decisions. Such instruments can exploit a diverse number of techniques [2], from simple statistical
approaches to those more sophisticated based on Deep Learning, Social Media Analysis, Natural
Language Processing, Sentiment Analysis, and so on [3–8].

The literature reports two main methodologies largely used to analyze and predict the behavior
of financial markets. The first is based on fundamental analysis, which takes into account the economic
elements that may affect the market activities. The second is based on technical analysis [9], which takes
into account the historical behavior of the market prices, as it relies on the consideration that the stock
prices already include all the fundamental information that could affect it. Moreover, the technical
analysis considers the financial asset behavior as a time series, and it is based on the consideration that
some behaviors tend to occur again in the future [10,11].

Machine learning solutions have been widely adopted in the context of financial time series
forecasting. They usually operate by using a supervised strategy, where classifiers (e.g., Naive Bayes,
Decision Trees, Support Vector Machines, etc.) label the data in order to learn their behavior and classify
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new data into a number of classes (i.e., in the stock market, such classes can be considered as prices
going up and down). There are also methods known in statistical analysis that perform regression,
which consists of a set of statistical processes for estimating the relationships among variables [12],
with the goal of predicting the exact stock price for a day. Although both technical and fundamental
data can be used as input data to machine learning approaches, fundamental analysis data do not allow
a reliable and high frequency trading for two reasons: (i) these types of information are published
at periodic times (e.g., every trimester); and (ii) they are the responsibility of companies, so they can
be liable to fraud. Therefore, most of the machine learning approaches do not rely on fundamental
information, using diverse other information from technical analysis such as lagged prices, returns,
technical indicators, and even news. One more difference between technical and fundamental analysis
is that the latter might often use sensitive data (e.g., revenue of companies) and policy procedures
should be defined to guarantee privacy, protection, and not disclosure of the data.

In recent years, machine learning approaches have been validated to perform stock market
predictions on the basis of historical time series, but, despite the numerous and sophisticated techniques
available today, such a task continues to be considered challenging [13]. There are several reasons to
explain that: (i) existing methods employ classifiers whose intrinsic parameters are tuned without
a general approach but are based on values heavily depending on the used classifier and the target
data [4,14]; (ii) the lack of a general technique to set the hyper-parameters (e.g., training and test
set sizes, lags, and walks dimension) for the experiments usually makes them not reproducible and
thus difficult to assess and to compare with baselines or other approaches [14]; (iii) several works in
literature do not specify whether they are performing their test analysis on in-sample or out-of-sample
data, and this is a further reason for confusion [4,15,16]; (iv) several works employ classifiers without
stating clearly which is the best and under which conditions. This may bring to the common sense that
each proposed classifier exploits the peculiarities of the presented market data. Therefore, this does
not help understanding whether the method is effective or there are ad hoc classifiers and data choices
to report best results only [17,18]; (v) different combinations of feature selection techniques have been
explored in financial forecasting, but a framework that can be designed with the goal to get as input
any feature and generate the optimal number of output features that is still missing [19]; (vi) for the
evaluation step, several metrics have been proposed, but there have not been precise explanations on
the adoption of one with respect to the other. This further introduces confusion on the overall analysis
and on which metric should be prioritized [20–23]; and (vii) to define trading strategies, parameters
such as those for the data preparation, algorithm definition, training methodology and forecasting
evaluation must be the choices to be made by the trading systems architect [1]. To the best of our
knowledge, the literature does not offer financial market forecasting approaches based on a systematic
strategy, able to model automatically itself with regard to these parameters and chosen market in order
to perform well the forecasting task no matter the market considered.

With all of these limitations in mind, we introduce in this paper a general approach for technical
analysis of financial forecasting based on an ensemble of predictors automatically created, considering
any kind of classifiers and adjustable to any kind of market. In our ensemble, each market will
have two sets of parameters tuned: the time series (hyper) parameters and classifier (intrinsic)
parameters, no matter the classifiers considered in the ensemble. These parameters are tuned in
late past (in-sample) and early past (out-of-sample) datasets, respectively. The input data of such
an ensemble are transformed by the Independent Component Analysis, whose parameters are also
optimized to make it general enough to return the optimal number of output signals. Therefore, our
approach is different from the literature as it is composed of an ensemble of classifiers that can include
any classifier and can be maximized for more than one market. To do that, we study the performance
of our data-driven ensemble construction by considering different performance metrics in known data
in order to tune ensemble parameters over the space of features by using the Independent Component
Analysis (ICA) feature selection, parameters (parameters of classifiers, or intra-parameters), and also
in the space of time (parameters of the time series). Experiments performed in several futures markets
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show the effectiveness of the proposed approach with respect to both buy-and-hold strategy and other
literature approaches, highlighting the use of such a technique especially by conservative and beginner
investors who aim to do safe investment diversification.

The contributions of this paper are therefore the following:

1. We formalize a general ensemble construction method, which can be evolved by considering any
kind of different classifiers and can be applied to any market.

2. We propose an auto-configurable nature, or data-driven nature of such an ensemble.
Our approach seeks for hyper (time series) and intrinsic (classifiers) parameters in late and
early past data, respectively, generating a final ensemble no matter the market considered.

3. We discuss the use of an optimized ICA method as feature selection of the ensemble input, in
order to produce the best number of selected features given any number of input signals.

4. We perform a performance study by using different metrics based on classification, risk and
return, comparing our approach to the well established Buy and Hold methodology and several
canonical state-of-the-art solutions.

5. In order to reduce the risk that the general strategy optimization phase would lead to results
affected by overfitting bias, we systematically rely on the concepts of strictly separated in-sample
and out-of-sample datasets for an efficient two-step ensemble parameter tuning, aimed to trade
in financial markets.

The remainder of the paper is organized into the following sections. Section 2 introduces basic
concepts and related work in stock market forecasting using individual and ensemble approaches.
Our self-configurable ensemble method is discussed in Section 3. Section 4 gives details on the
experimental environments (datasets), adopted metrics, and implementation details of the proposed
method and competitors; Section 5 reports the results on the basis of several metrics in four different
markets and, finally, Section 6 provides some concluding remarks and points out some further
directions for research where we aim to head as future work.

2. Background and Related Work

The futures market (also known as futures exchange) is an auction market in which investors buy
and sell futures contracts for delivery at a specified future date. Some examples of the futures market
are the German DAX, the Italian FTSE MIB, the American S&P500, among others. Nowadays, as it
happens in almost all markets, all buy and sell operations are made electronically.

In the futures market, the futures contracts represent legal agreements to buy or sell, at a
predetermined price and time in the future, a specific commodity or asset. They have been standardized
in terms of quality and quantity in order to make easy the trading on the futures exchange. Whoever
buys a futures contract assumes an obligation to purchase the underlying asset when the related
futures contract expires, whereas whoever sells it assumes an obligation to provide the underlying
asset when the related futures contract expires.

Several strategies can be used in order to trade futures contracts. In this paper, we assume an
intra-day trading strategy. This methodology to trade stocks, also called day trading, consists of buying
and selling stocks and other financial instruments within the same day. In other words, all positions
are squared-off (i.e., the trader or portfolio has no market exposure) before the market closes, and there
is no change in ownership of shares as a result of the trades. Such a strategy allows the investors to be
protected against the possibility of negative overnight events that have an impact on financial markets
(i.e., the exit of a country from a commercial agreement, a trade embargo, a declaration of war, and so
on). Like other trading strategies, a stop-loss trigger forcing the interruption of the operation when
the loss reaches a predetermined value should be adopted to contain risk. Some disadvantages of the
intra-day trading strategy are instead the short time available to increase the profit and the commission
costs related to the frequent operations (i.e., buy and sell).
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Futures market contract prices are published periodically for the general public access. They are
usually in the form of comma separated values’ text files, containing the following information: date,
open value, highest open value, close value, highest close value, exchange volume. These data are
updated in a specific time resolution (5 min, 1 h, 1 day, etc.). This set of observations taken at different
times is considered a time series data, and is of crucial importance in many applications related to the
financial domain [24–29].

Several researchers have explored such time series data with the goal of forecasting future
market behavior. The main advantage offered by the approaches based on the technical analysis [9]
is related to their capability to simplify the prediction by facing it like a pattern recognition problem.
By following this strategy, the input data are given by the historical prices and technical indexes,
while the output (forecasting) is generated by using an evaluation model defined on the basis of
the past data [15]. Both the statistical and more recent machine-learning-based techniques work by
defining their evaluation models considering historical market data as time series. This way, it is
possible to analyze the historical data of the stock market, making predictions for the future by using a
large number of state-of-the-art techniques and strategies designed to work with time series data [30].

Many machine learning approaches have been deployed in order to analyze this specific kind of
time series, which has a non-randomicity and nonlinearity nature [31,32], in order to predict different
market prices and returns. Most of these approaches are aimed to predict the single price and/or
the prices behavior. The work in [33] used standardized technical indicators to forecast rise or fall of
market prices with the AdaBoost algorithm, which is used to optimize the weight of these technical
indicators. In [34,35], the authors used an Auto Regressive Integrated Moving Average (ARIMA)
in pre-processed time series data in order to predict prices. The authors in [36] proposed a hybrid
approach, based on Deep Recurrent Neural Networks and ARIMA in a two-step forecasting technique
to predict and smooth the predicted prices. Another hybrid approach is proposed in [37], which
uses a sliding-window metaheuristic optimization with the firefly algorithm (MetaFA) and Least
Squares Support Vector Regression (LSSVR) to forecast the prices of construction corporate stocks.
The MetaFA is chosen to optimize, enhance the efficiency, and reduce the computational burden of
LSSVR. The work in [38] used Principal Component Analysis to reduce the dimensionality of the data,
Discrete Wavelet Transform to reduce noise, and an optimized Extreme Gradient Boosting to trade in
financial markets. The work in [39] validated an extension of Support Vector Regression, called Twin
Support Vector Regression, for financial time series forecasting. The work in [40] proposed a novel
fuzzy rule transfer mechanism for constructing fuzzy inference neural networks to perform two-class
classification, such as what happens in financial forecasting (e.g., buy or sell). Finally, the authors
in [41] proposed a novel learning model, called the Quantum-inspired Fuzzy Based Neural Network,
for classification. This learning happens using concepts of Fuzzy c-Means clustering. The reader
should notice that fuzzy learning is commonly used to reduce uncertainty in the data [42], so such
solutions can be useful for financial forecasting. Several other interesting studies have been carried out
in the literature, such as a comparison of deep learning technologies to price prediction [43], the use
of deep learning and statistical approaches to forecast crisis in the stock market [44], and the use of
reward-based classifiers such as Deep Reinforcement Learning [45], among others.

However, it is usually known that single classifiers/hybrid approaches can obtain better
performance than that of their single versions when applied in an ensemble model [46,47]. With that
in mind, the literature also reports many approaches that exploit a set of different classification
algorithms [46,48,49] whose results are combined according to a certain criterion (e.g., full agreement,
majority voting, weighted voting, among others). An ensemble process can work in two ways:
by adopting a dependent framework (i.e., in this case, the result of each approach depends on the output
of the previous one), or by adopting an independent framework (i.e., in this case, the result of each
approach is independent) [50]. In this sense, the work in [51] proposed a novel multiscale nonlinear
ensemble leaning paradigm, incorporating Empirical Mode Decomposition and Least Square Support
Vector Machine with kernel function for price forecasting. The work in [52] fits the same Support
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Vector Machines classifier multiple times on different sets of training data, increasing its performance
to predict new data. The authors of [53] combined results of bivariate empirical mode decomposition,
interval Multilayer Perceptrons, and an interval exponential smoothing method to predict crude oil
prices. Other interesting approaches using ensembles are the use of multiple feed forward neural
networks [54], multiple artificial neural networks with model selection [55], among others.

Notwithstanding, it should be observed that the improvement of ensembles does not represent
the norm because certain ensemble configurations can bring a decreasing of the classification
performance [56], so a smarter way to select classifiers in the ensemble must be done. Additionally,
literature solutions have used ensembles of classifiers with fixed hyper-parameters, such as how to
dispose the data to train the ensemble, how to select the parameters of the feature selection approach,
among others. In addition, several works employ classifiers without stating with clarity which is the
best and under which conditions. This may bring the belief that each classifier exploits peculiarities of
the presented market data and, therefore, this does not help with understanding whether the method
is effective or the used ensemble has been chosen specifically for the considered market [17,18]. Finally,
the use of more diverse classifiers is not extensively studied in the proposed ensembles and neither is
a flexible ensemble approach that is adjustable to any kind of market. We show how we tackle these
issues with our proposed method in the next section.

3. Proposed Approach

With the previous limitations of literature approaches in mind, we propose in this paper an
auto-configurable ensemble, composed of any number of classifiers and adjustable to any market.
This ensemble is created automatically after optimizing two sets of parameters: hyper and intrinsic.
Once optimized in In-Sample late past (IS) data, hyper-parameters are transferred to the training part
of early past data, which we call Out-of-Sample (OOS) data. These hyperparameters will help to find
another set of parameters, called intrinsic (classifier) parameters that are optimized in order to update
the ensemble of classifiers to more recent data. Then, any new data can be tested. This reduces the
problem of creating ad hoc ensembles for specific markets, as our ensemble method outputs a pool
of best classifiers for any market as soon the market data are in the IS and training part of OOS sets.
Additionally, we allow any number and type of classifiers technologies in the proposed ensemble,
minimizing the brute force search for specific classifiers in an ensemble.

Our proposed auto-configurable ensemble is composed of three steps, as follows:

1. Feature Selection: data from the target market are pre-processed, with parameters being learned
in the IS data.

2. Two-Step-Auto Adjustable Parameters Ensemble Creation: with the auto-configurable
optimized sets of hyper and intrinsic parameters found in IS data, the approach outputs the
set of hyper-parameters only, which will be transferred to a new optimization round. This new
optimization step is done in the training part of the OOS data, and will find final intrinsic
parameters in recent data to build the final ensemble of classifiers.

3. Policy for Trading: we define how to use the created ensemble to trade.

Detailed discussions of these steps are done in the next subsections.

3.1. Feature Selection

In order to reduce noise from the data, the literature reports some approaches able to better
generalize the involved information by selecting only the characteristics that best represent the domain
taken into account (e.g., the stock market). Although other feature selection techniques could be
used by our proposed approach, we considered the Independent Component Analysis (ICA) in our
approach, as it was, as far as we know, not fully explored in the financial market context. This feature
selection approach is able to extract independent streams of data from a dataset composed of several
unknown sources, without the need to know any criteria used to join them [57].
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The idea of ICA is to project the d-dimensional input space into a lower dimensional space d′.
It does this by finding a linear representation of non-Gaussian data, so the components are statistically
independent. Let us assume a d-dimensional observation vectors x = {x1, x2, ..., xd} composed of zero
mean random variables. Let s = (s1, s2, ..., sd) be the d-dimensional transform of x. Then, the problem
is to determine a constant weight matrix W so that the linear transformation of the observed variables

s = Wx (1)

has certain properties. This means that the input x can be written in terms of the independent
components, or

x = A−1s, (2)

where A is the inverse (or the pseudo-inverse) of the W transform matrix.
The ICA Based dimensionality reduction algorithm is based on the idea that the features that

are least important are the ones whose contribution to the independent components are the least.
The least important features are then eliminated and the independent components are recalculated
based on the remaining features. The degree of contribution of a feature is approximated as the sum of
the absolute values of the transform matrix W entries associated with that feature. The ICA process
considers the input data as a nonlinear combination of independent components by assuming that
such a configuration is true in many real-world scenarios, which are characterized by a mixture of
many nonlinear latent signals [58,59]. A more rigorous formalization of ICA is provided in [60], where
it has adopted a statistical latent variables model. It assumes that we observe n linear mixtures of n
independent components.

In our optimized ICA approach, we select the best possible number of parameters to be used by
this technique, no matter the market considered. This is done by adjusting hyper-parameters, a step
further discussed in the next subsection.

3.2. Two-Step Auto Adjustable Parameters’ Ensemble Creation

This section discusses the proposed method of generating automatically an ensemble of several
classifiers to trade in any kind of market. We start by giving an overview of the approach; then, we
show how we perform optimization of parameters and, finally, we describe the parameters to be
learned in order to output the final ensemble.

3.2.1. Overview

Our method is a self-configurable ensemble of classifiers whose pipeline can be seen in Figure 1.
In our approach, hyperparameters (time-series-based) are optimized through performances metrics
calculated for the ensemble in the IS data, and are transferred to the training set of OOS (more recent
past) data. Finally, intrinsic (classifiers) parameters are found for the classifiers of the final ensemble,
considering more recent past data and the ensemble is updated to test any kind of new data.
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Figure 1. The proposed two-step auto adjustable parameters ensemble for market forecasting. This
approach optimizes two sets of parameters for a final ensemble to trade in any market. Firstly, in an
in-sample dataset with late past data, we optimize the hyperparameters, considering performance
metrics in the testing part of data. Then, these hyperparameters are transferred to create ensembles for
an early past (out of sample) dataset. The individual classifiers have their intrinsic parameters updated
in the validation part of this recent data and then the final ensemble is built.

The performance metrics we consider in our study lie within the machine learning and the
economic domains. The rationale behind that is that, in addition to a mere evaluation of the percentage
of correct predictions (i.e., accuracy), it is also necessary to estimate the impact of them at the economic
level. For instance, the measurement of a good accuracy in the predictions related to a period of five
years is not significant if, for some intervals of this period (e.g., two consecutive years), we suffered huge
economic losses that, certainly, in a real-world scenario, would have stopped any further investment.
For this reason, together with the Accuracy metric, we adopted as evaluation metrics the Maximum
Drawdown, the Coverage, and the Return Over Maximum Drawdown, whose formalization will be
provided later in Section 4.2.

To illustrate the benefits of our proposed auto-configurable ensemble method, we build it
considering three basic state-of-the-art classifiers [3,61,62]: Gradient Boosting (GB), Support Vector
Machines (SVM), and Random Forests (RF), although any other kinds of classifiers may either replace
those or be plugged in. Our method has two sets of parameters to be learned, through a methodology
described in detail in the next subsection.

3.2.2. Walk-Forward Optimization

One of the most used optimization approaches within a financial forecasting process for the
detection of the best parameters to adopt in the trading strategy is called Walk Forward Optimization
(WFO) [63]. We adopt such a strategy to find the best ensemble hyperparameters in the IS data and
intrinsic parameters in part of OOS data. It works by isolating the IS time series into several segments,
or walks, where each segment is divided in two parts: Training and Testing sets. The parameters
optimization for the used trading strategy is then performed by (i) using several combinations of
parameters to train the model in the training part of a segment; and (ii) declare the best (optimized)
parameters the ones that yield best performance in the testing set of the same segment. The process is
then repeated on the other segments. The performance obtained in the testing set of each segment is
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not biased as we are not using unknown data, but just IS data. The Walk Forward Optimization can be
performed by following two methodologies, described as follows:

1. Non-anchored Walk Forward Optimization: this approach creates walks of the same size. For
example, let us assume we have a dataset composed of 200 days that we want to divide into six
walks of 100 days. One way is to consider the first 80 days of each walk as the training set and
the remaining 20 days as the testing set, as shown on the left side of Table 1.

2. Anchored Walk Forward Optimization: in this scenario, the starting point of all segments is the
same. Additionally, the training set of each segment is longer than the training set of the previous
one; therefore, the length of each walk is longer than the length of the previous one, as shown on
the right side of Table 1.

Table 1. Non-anchored and Anchored Walk Forward Optimization.

Data Non-Anchored WFO Anchored WFO
Segment/Walk Training Testing Days Training Testing Days

1 1→ 80 81→ 100 100 1→ 80 81→ 100 100
2 21→ 100 101→ 120 100 1→ 100 101→ 120 120
3 41→ 120 121→ 140 100 1→ 120 121→ 140 140
4 61→ 140 141→ 160 100 1→ 140 141→ 160 160
5 81→ 160 161→ 180 100 1→ 160 161→ 180 180
6 101→ 180 181→ 200 100 1→ 180 181→ 200 200

In our approach, we consider the non-anchored modality of the Walk Forward process, a widely
used approach in the literature for financial markets [64]. Additionally, the non-anchored WFO used in
our approach further subdivides the training data in Table 1 into training and validation data, where
the validation data are 30% of the training data. Then, the performance in the validation data will
help find a set of intrinsic parameters of the classifiers of the ensemble, whereas the performance in
the testing data will find the hyper-parameters of the ensemble. We discuss such auto-configurable
parameters in the next section.

3.2.3. Transferable Self Configurable Parameters

With the information of the classifiers used and the optimization methodology in mind, we
finally describe the parameters to be found in order to generate the final ensemble. The first set of
parameters to be learned through non-anchored WFO comes from the classifiers and are reported in
Table 2, along with a list of values that must be grid searched within the process. Other values and even
other parameters can be added too, making the classifiers even more robust to the uncertainties in
the training data. Such values are optimized according to the performances in the validation data, a
fraction of the training data discussed before in Section 3.2.2.

Table 2. Intra-parameters grid.

Algorithm Parameter Values Description

Gradient Boosting n_estimators 10, 25, 50, 100 Boosting stages to perform
learning_rate 0.0001, 0.001, 0.01, 0.1 Contribution of each tree
max_depth 2, 4, 6, 8, 10 Maximum depth of each estimator

Support Vector Machines max_iter 20, 50, 100 Hard Limit on iterations within solver
tol 0.0001, 0.001, 0.01, 0.1 Tolerance for stopping criterion
C 1, 10, 20, 50 Penalty of the error term
gamma 0.0001, 0.001, 0.01, 0.1 Coefficient for the used kernel

Random Forests n_estimators 20, 50, 100 Trees in the forest
max_depth 1, 5, 10, 50 Maximum depth of the tree
min_samples_split 0.2, 0.4, 0.8, 1.0 Minimum samples to split an internal node
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The second set of parameters to be tuned is represented by the hyper-parameters, which are not
from the classifiers anymore, but are related to the non-anchored WFO and ICA feature selection.
Table 3 shows the hyper-parameters that need to be optimized according to the chosen metric. They are
(i) the dimension of the window for each walk; (ii) the training set size; (iii) lag size; and (iv) number
of output signals of the considered ICA feature selection approach. These hyper-parameters are
optimized through the chosen performance metrics after ensemble classification of testing data, where
test_size = window_size − train_size − validation_size. These hyperparameters’ self-configuration
step of our approach is carried out only within the IS part of our dataset, according to a considered
metric. Once the hyperparameters and intrinsic parameters are found in the IS data, the algorithm
transfers the hyperparameters only to the OOS dataset. Then, only the intrinsic parameters of the
ensemble are optimized and, thus, the ensemble is ready to test new data.

Table 3. Hyper-parameters grid.

Parameter Values Description

window_size 100, 150, 200, 250, 300 Days used for the training and test sets definition
train_size 60, 65, 70, 75, 80 Percentage of window_size used for the training set
lags 1, 3, 5, 7, 9 Previous days to use in order to predict the next one
ica_comp 1, 3, 5, 7, 9 Independent Component Analysis output components

Algorithm 1 describes the proposed approach of multi-classifiers’ auto-configurable ensemble.
The algorithm has three main variables: (i) MAX_FINAL_METRIC (initialized in step 7 of the
algorithm), which will be used in step 28 to check which hyperparameter h ∈ H has the best ensemble
performance metric; (ii) ENS_METRICS (initialized in step 8 of the algorithm), which will sum up the
metric of applying the ensemble in test part of IS data in all walks; and (iii) MAX_WALK_METRIC
(initialized in step 14 of the algorithm), which will be used to optimize classifiers intrinsic parameters
in the validation data of each walk. The algorithm starts by, given a combination of hyperparameters
h ∈ H, building the walks W (step 10) and, for each walk w ∈ W, it builds and transforms features
(steps 12 and 13), doing a grid search in all the classifiers’ intrinsic parameters combinations i ∈ I in
order to find the best classifier for each walk (steps 16–22). After the best of each classifier is found for
a walk, we apply the ensemble of them accumulating the performance metric in the testing data for all
the walks (step 26). After this is done for each hyperparameter combination, we verify, in steps 28–30,
if the total metric of the ensemble in all the walks is the highest possible. When all the hyperparameter
combinations h have their ensemble tested and with their accumulated metrics on the testing data
calculated, in step 33, the algorithm is sure that it found the best possible hyperparameter h′ ← H,
which is returned by the algorithm.

After the hyperparameters are found in the IS data, we start the search for the intrinsic parameters
of the ensemble in recent past data, and then our ensemble is ready and can already trade. Such
procedure is reported in Algorithm 2. In this algorithm, just two metrics are necessary: (i) the variable
MAX_WALK_METRIC (step 12 of the algorithm) to tune the intrinsic parameters of the classifiers
in the new OOS data; and (ii) METRIC (step 8 of the algorithm) to calculate the final metrics of the
ensemble trading on unseen OOS data. The process is similar to Algorithm 1, with the difference being
the fact that hyperparameters are not searched anymore and the testing data are used to report trading
real-time results. The algorithm returns the mean metric, considering the whole testing period.
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Algorithm 1 Proposed hyperparameter search approach.

Require:
1: IS = time series from in sample data
2: I = list of intra-parameters as shown in Table 2
3: H = list of hyperparameters as shown in Table 3
4: C = list of classifiers from the ensemble

Ensure:
5: h′= Optimized hyperparameters
6: procedure RETURN_HYPERPARAMETERS(IS, I, H, C)
7: MAX_FINAL_METRIC ← 0
8: ENS_METRIC ← 0
9: for h in H do . for each hyperparameter combination

10: W[h]← buildWalks(IS, h(window_size)) . Starts non-anchored WF0
11: for w in W[h] do . for each walk
12: F ← buildFeatures(w, h(lags)) . get features
13: F′ ← icaTrans f orm(h(ica_comp), F) . transform features
14: MAX_WALK_METRIC ← 0
15: for c in C do . for each classifier
16: for i in I do . for each intrinsic parameter, train and validate
17: M[i]← trainClassi f ier(F′, h(train_size), c[i])
18: METRIC ← testClassi f ier(M[i], F′[h(train_size) ∗ 0.3])
19: if METRIC > MAX_WALK_METRIC then
20: E[c, w]← M[i]
21: MAX_WALK_METRIC ← METRIC
22: end if
23: end for
24: end for
25: test_data← F′[h(window_size)− h(train_size)− h(train_size) ∗ 0.3]
26: ENS_METRIC ← ENS_METRIC + testClassi f ier(E[C, w], test_data)
27: end for
28: if ENS_METRIC > MAX_FINAL_METRIC then
29: h′ ← h
30: MAX_FINAL_METRIC ← ENS_METRIC
31: end if
32: end for
33: return h′
34: end procedure

Doing the search of parameters this way, the hyper-parameters of the final ensemble will be
optimized in the IS data through non-anchored WFO. Then, these hyperparameters are transferred to
the non-anchored WFO of the OOS data, and intrinsic parameters are now optimized in the validation
data only. Thus, an auto adjustable ensemble approach is built in such a way that will return an
ensemble of the best possible classifiers for any market, as long as their IS and training and validation
OOS data are fed to the algorithm, being this way a data-driven optimization approach.
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Algorithm 2 Proposed intrinsic parameter search approach and ensemble trading

Require:
1: OOS = time series from in sample data
2: I = list of intra-parameters as shown in Table 2
3: h′ = best hyperparameter found in Algorithm 1
4: C = list of classifiers from the ensemble

Ensure:
5: MEAN_METRIC= Mean performance of trading
6: procedure ENSEMBLE_TRADING(OOS, I, h′, C)
7: W ← buildWalks(OOS, h′(window_size)) . Starts non-anchored WFO
8: METRIC ← 0 . Metric used to report testing results
9: for w in W do . for each walk

10: F ← buildFeatures(w, h′(lags)) . get features
11: F′ ← icaTrans f orm(h′(ica_comp), F) . transform features
12: MAX_WALK_METRIC ← 0
13: for c in C do . for each classifier
14: for i in I do . for each intrinsic parameter, train and validate
15: M[i]← trainClassi f ier(F′, h′(train_size), c[i])
16: METRIC ← testClassi f ier(M[i], F′[h′(train_size) ∗ 0.3])
17: if METRIC > MAX_WALK_METRIC then
18: E[c, w]← M[i]
19: MAX_WALK_METRIC ← METRIC
20: end if
21: end for
22: end for
23: test_data← F′[h′(window_size)− h′(train_size)− h′(train_size) ∗ 0.3]
24: METRIC ← METRIC + testClassi f ier(E[C, w], test_data)
25: end for
26: MEAN_METRIC ← METRIC/|W|
27: return MEAN_METRIC
28: end procedure

3.3. Policy for Trading

Many literature studies [65,66] demonstrate the effectiveness of ensemble approaches that
implement different algorithms and feature subsets. Ensemble approaches [67] usually get the best
results in many prestigious machine learning competitions (e.g., Kaggle, Netflix Competition, KDD,
and so on).

Therefore, in this paper, we are adopting an ensemble learning approach, which means that the
final result (i.e., the prediction) is obtained by combining the outputs made by single algorithms
in the ensemble. As stated before in Section 2, such an ensemble process can work in a dependent
or independent fashion. The approach we choose is the independent framework, so each classifier
decision may represent a vote that is independent from the others. We apply such an approach using
three selected algorithms (i.e., Gradient Boosting, Support Vector Machines, and Random Forests) with their
ensemble hyperparameters initially found in the IS data, and whose individual classifiers intrinsic
parameters are found in the OOS data. We adopt in our ensemble approach the aggregation criterion
called complete agreement, meaning that we make our prediction to buy or sell only if there is a total
agreement among all the algorithm predictions, otherwise we do not make a prediction for the related
futures market (hold). This is an approach that usually leads towards better predictive performance,
compared to that of each single algorithm. Such an approach for the future day prediction is better
illustrated in Algorithm 3.
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Algorithm 3 Future day prediction

Require: A = Set of algorithms, D = Past classified trading days, d̂ = Day to predict

Ensure: result = Day d̂ prediction

1: procedure PREDICTION(A, D, d̂)

2: models = trainingModels(A, D)

3: predictions = getPredictions(models, d̂)

4: if agreement(predictions) == TRUE ∧ predictions == −1 then

5: result← sell

6: else if agreement(predictions) == TRUE ∧ predictions == 1 then

7: result← buy

8: else

9: result← hold

10: end if

11: return result

12: end procedure

4. Experimental Setup

In this section, we discuss the setup chosen to guide the experiments performed to validate
our ensemble approach against some baselines from the literature. We start discussing the datasets,
the performance metrics, and implementation aspects of our proposed method and of the competitors.

4.1. Datasets

To verify our approach performance against some baselines, we selected four datasets based on
stock futures markets (SP500, DAX and FIB) and one future of commodity (CL). As far as the stock
futures markets are concerned, we included the FIB market, which is characterized by an atypical
behavior with respect to the other stock futures markets in the years taken into account during the
experiments. We based our choice on the observation that stock markets behavior is usually different
from that of the bond markets, as there usually exists an inverse correlation between them. Indeed, the
stock futures are frequently characterized by a strong upward bias (e.g., SP500 and DAX), with some
exceptions related to some particular economic scenarios, as it happened for the Italian FIB in recent
years. Details of such datasets are reported in Table 4.

Table 4. Futures Market Datasets.

Futures Name From To Trading
Dataset Day Day Days

SP500 Standard & Poors 500 02/01/2008 31/12/2018 2827
DAX German Market 02/01/2008 28/12/2018 2792
FIB Italian Market FIB Future 02/01/2008 27/12/2018 2790
CL Light Sweet Crude Oil Future 02/01/2008 28/12/2018 2774

These datasets can be easily found at different time resolutions (e.g., 5-min, 10-min, 1-h, etc.).
In this work, we further transform the futures market datasets by adopting a 1-day resolution. It means
that, starting from the original resolution that characterizes the dataset (e.g., 5-min, 10-min, 1-h, among
others), the data have been opportunely joined in order to obtain for each day included in the dataset
the following new information I = {date, open value, highest value, lowest value, close value, exchange
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volume}, where each record of the new dataset corresponds to one day. As the SP500 market has a point
value of 50 USD, the DAX market has a point value of 25 EURO, the FIB market has a point value of 5
EURO and the CL market has a point value of 1000 USD, in order to simplify, we do not convert the
points to their corresponding currency values, keeping such information in points.

In these datasets, we denote a set of data composed of a series of consecutive trading days as
X = {x1, x2, . . . , xN}, and a set of features F = {date, open, high, low, close, volume, next} that compose
each x ∈ X and next = 1 if the close − open of the next day is greater than or equal to zero, and
next = −1, otherwise. We also label the buy operation to 1, and sell operation to −1, as they represent
the operations allowed on the futures markets taken into consideration in this paper.

It should be observed that, according to the aforementioned definition of next ∈ F, a trading
day can only belong to one class c ∈ C, where C = {1,−1}. We also denote as I = {i1, i2, . . . , iX} the
components of each trading day x ∈ X, obtained by transforming the original data through a feature
selection process, which in our case is ICA. Finally, we denote a set of of operations O = {buy, sell, hold}
allowed on a futures market, where hold means that no operation of buy or sell has been performed.
The reader notices that a buy operation corresponds to a long trade (C = 1), where a trader buys an
asset hoping the price will go up at the end of the day. On the other hand, a sell operation corresponds
to a short trade (C = −1). In such a case, a trader sells an asset before buying it hoping that its price
will go down.

Given the previous definitions, for each trading day x (i.e., each dataset row), we add a further
data field next, which corresponds to the target class related to the next trading day x + 1, and is
defined according to the notation reported in Equation (3):

nextx =

{
1, if (closex+1 − openx+1) ≥ 0,

−1, otherwise.
(3)

We let the reader observe that the time series resolution may be set even to a finer scale, e.g.,
hours or minutes. In such a case, a record in a given time interval would consist of a group features
{time, open value, highest value, lowest value, close value} for each considered interval, ended with the next
class, as defined above.

To train our prediction models with more than a day of the features market (lags hyper-parameter
in Table 3), we can arbitrarily aggregate more days, obtaining a series of vectors V composed of ICA
components of N days, with the next value as target class. As an example, assuming we have to
aggregate three days x1, x2, x3, each of them characterized by two ICA components i1, i2, we would
obtain the vector shown in Equation (4):

V = [x1(i1), x1(i2), x2(i1), x2(i2), x3(i1), x3(i2), nextx4 ]. (4)

In our experiments, we report the experiments considering the period from 2016 to 2018 as OOS
data, where we have updated and tested our approach after the auto-configuration and tuning of the
hyperparameters in the IS data, which uses the remaining years.

4.2. Evaluation Metrics

In this subsection, besides the canonical performance evaluation metrics such as Accuracy, we
added in our study other financial performance metrics, such as Maximum Drawdown, Coverage, Return
Over Maximum Drawdown, and Equity Curve. In the following, we detail each of them.

4.2.1. Accuracy

This metric gives us information about the number of instances correctly classified, compared to
the total number of them. It provides an overview of the classification performance. Formally, given
a set of X closing trading days to be predicted, it is calculated as shown in Equation (5), where |X|
stands for the number of trading days and X(+) stands for the number of those correctly classified:
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Accuracy(X) =
X(+)

|X| . (5)

As our approach only acts in the market when there is a total agreement of votes between the
classifiers considered, we calculate the accuracy only when our proposed ensemble takes decisions
(i.e., no hold operations are done). This happens because our trader does not enter the market all the
time, so the accuracy of our trader is considered a different metric than the same used for baselines,
which enter the market all the time. Therefore, we use the accuracy metric in the experiments not for
benchmarking all approaches, but rather for two tasks: (i) compare the individual original and boosted
classifiers in order to highlight the benefits of the data-driven nature of our approach; and (ii) assess
the accuracy of our proposed approach according to its total trading actions in the market.

4.2.2. Maximum Drawdown (MDD)

Such a metric represents the largest drop from a peak to a trough before a new peak is reached.
It indicates the downside risk in a the time period taken into account [68]. A low maximum drawdown
is preferred as this indicates that losses from investment were small. If an investment never lost a
penny, the maximum drawdown would be zero. Formally, denoting as P the peak value before the
largest drop, and as L the lowest value before a new high is established, its formal notation can be
simplified as shown in Equation (6):

MDD =
(P− L)

P
. (6)

As stated before, low MDDs mean that losses in a trading strategy are low. Therefore, we use
the Maximum Drawdown in our experiments as a measure to quantify how risky are the algorithms
evaluated.

4.2.3. Coverage (COV)

The coverage metric reports the percentage of times we carried out an operation [69] (i.e., buy or
sell) on the futures market (i.e., |buy|+ |sell|) compared to the number of days taken into consideration
(i.e., |X|), as shown in Equation (7). It gives us important information, since in addition to predicting a
buy or sell operation, an algorithm can also predict to not buy and not sell anything (hold):

COV =
(|buy|+ |sell|)

|X| . (7)

In our experiments, we use the COV metric to quantify how many times our proposed trading
system decides to act in the market (i.e, perform Long or Short operations).

4.2.4. Return over Maximum Drawdown (RoMaD)

The RoMaD is a metric largely used within the financial field in order to evaluate the gain or
loss in a certain period of time, such as the Sharpe Ratio or the Sortino Ratio [70,71]. More formally,
it represents the average return for a portfolio expressed as a proportion of the Maximum Drawdown
level, as shown in Equation (8), where Portfolio Return denotes the difference between the final capital
and the initial one:

RoMaD =
Port f olio Return

MDD
. (8)

In practice, investors want to see maximum drawdowns that are half or less the annual portfolio
return. This means that, if the maximum drawdown is 10% over a given period, investors want a
return of 20% (RoMaD = 2).
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4.2.5. Equity Curve

The Equity Curve (EC) reports the change in the value of a trading account in the time period
graphically [72]. A significant positive slope usually indicates the effectiveness of the adopted trading
strategy, while negative slopes indicate that such a strategy generates negative returns. For instance,
given an Initial Investment II to trade a number of futures that have a certain entry price and exit price, and
also considering the related trade commission, we can calculate the points EC = {ec1, ec2, · · · , ecN} that
we need to plot in the Equity Curve as shown in Equation (9):

ec1 = I I − ((entry price × number o f f utures)− commission)
ec2 = I I − ((exit price× number o f f utures)− commission)
...
ecN−1 = I I − ((entry price × number o f f utures)− commission)
ecN = I I − ((exit price× number o f f utures)− commission).

(9)

We use the EC in our experiments to compare the evolution of gains and losses of all the evaluated
algorithms over time.

4.3. Technical Details

The approach proposed in this paper has been developed in Python, as well as the implementation
of the state-of-the-art classification techniques used to define our ensemble approach, which are based
on scikit-learn (http://scikit-learn.org). In order to make our experimental results reproducible, we
have set to zero the seed of the pseudo-random number generator used by the scikit-learn evaluation
algorithms. The machine where all the experiments have been performed is an Intel i7-3770S, octa-core
(3.10 GHz × 8) with a Linux 64-bit Operating System (Debian Stretch) with 8 GB of RAM.

As for the competitors, we firstly considered the common Buy and Hold baseline strategy.
It represents a passive investment strategy in which the investors buy futures and hold them for
a long period, regardless of the market’s fluctuation. Such a strategy is largely used in literature
as a baseline to evaluate the profitability of an investment strategy. In addition, we performed
the future market predictions by using single predictors (i.e., GB, SVM, and RF), configuring their
default hyper-parameters according to some common values in the literature: 40% of the IS dataset
as walk size, of which 75% is used as training set and the remaining 25% as validation set with 5
day-lags [15,16,73–75]. Finally, we also used a recent approach to perform trading [39], which we call
TSVR in the remaining of this paper. For this approach, we used both the linear (LIN) and nonlinear
(NONLIN) kernel. As described in in [39], we have used 10-fold cross validation in the training data to
find the kernel parameters that yielded the best mean squared error in all markets. As this approach is
proposing to predict the closing price (regression problem), we mapped the problem consistently with
ours and changed the output so that for each day we have either a long or short operation. As with
our approach, final results are reported in terms of classification performance in the testing part of the
OOS dataset.

Regarding time consumption related to our approach, we can observe from the pipeline showed
in Figure 1 that it is strictly related to the canonical time spent by each algorithm that composes the
ensemble, multiplied by the intrinsic parameters involved in the auto-tuning process plus the time
spent by other processes (i.e., walk-forward and ICA Feature Selection), since the detection process of
the optimal hyper-parameters has been previously (one time) performed in the in-sample part of the
datasets; therefore, it does not need to be repeated at each prediction.

More formally, assuming t being the execution time of each ensemble algorithm, na the number
of algorithms in the ensemble, np the number of parameters involved in the auto-tuning process and
∆ the execution time related to the other processes, the total time consumption τ can be formalized as
shown in Equation (10):

http://scikit-learn.org
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τ = (t · na · np) + ∆. (10)

For example, with a previous information that the proposed approach involves three algorithms
(i.e., Gradient Boosting, Support Vector Machine, and Random Forests) with, respectively, three, four, and
three intrinsic parameters, and by using a machine with the software and hardware characteristics
reported in Section 4.3, the average time consumption for each prediction on the markets taken into
account is reported in Table 5.

Table 5. Time consumption.

Futures Average Prediction
Market Time in Seconds

SP500 5.36
DAX 1.69
FIB 5.40
CL 13.57
Mean time 6.50

It should be observed that such a running time can be effectively reduced by parallelism of the
process over several machines, both along algorithms and markets, by exploiting large scale distributed
computing models such as MapReduce [76,77]. This improves the approach scalability in the context
of applications that deal with frequency trading.

5. Experiments

In this section, we discuss the experimental results of applying our approach in four different
markets, comparing it with common benchmarks and state-of-the-art approaches. We divide this
section into two subsections: firstly, we start in Section 5.1 the discussion of results in a natural trading
setup. Then, we perform in Section 5.2 a study of the impact of different performance metrics in the
proposed trading system.

5.1. Trading Results

We firstly start showing trading results of the non-optimized individual classifiers and other
baseline approaches considered in the experiments in Table 6, where BH stands for Buy and Hold,
GB stands for Gradient Boosting, SVM stands for Support Vector Machines, and RF stands for Random
Forests. All the values are expressed in futures market points, with the exception of those expressed as
a percentage. It should be noted that all the experiments have been performed by taking into account
the same out-of-sample time period used for the performance evaluation of our approach (i.e., years
from 2016 to 2018).

It can be seen from Table 6 that the Buy and Hold strategy performed well in two (SP500 and DAX)
out of four markets in terms of return if compared to baseline approaches. Regarding the individual
classifiers, the best mean accuracy of 53.75% was achieved by the SVM classifier. Such a high mean
accuracy makes this classifier achieving the highest return in FIB market. According to MDD, it is
less risky (lowest MDD) for FIB and SP500 markets. The GB classifier got second place with 50.50%
mean accuracy. However, it is not the best trading strategy in terms of return and risk in any of the
markets considered, which allows us to reach an interesting conclusion that higher accuracies do not
necessary imply better trading strategies. RF classifier achieved a 50% mean accuracy. In terms of risk,
it outperforms others in a DAX market. Finally, TSVR showed a very poor algorithm performance.
There are two possible explanations for its poor behavior in all these markets in general: (i) TSVR is
trained to perform regression instead of classification (we use the sign of predictor to do a decision);
and (ii) we consider the standard parameters of such a technique. With such findings, we enforce the
necessity of using optimized parameters and ensembles of classifiers with diverse behaviors.
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Table 6. Buy and hold and single predictors’ performance with default configurations.

Strategy Market Accuracy MDD MDD (%) Return Return (%) RoMaD

BH SP500 – 601.75 29.53 473 23.21 0.79
BH DAX – 3102.5 29.49 51.5 0.49 0.02
BH CL – 34.29 65.71 −5.92 −11.35 −0.17
BH FIB – 6175 29.25 −3135 −14.85 −0.51

GB SP500 0.51 465.75 22.86 136.5 6.7 0.29
GB DAX 0.49 4970.5 47.25 −3878 −36.86 −0.78
GB CL 0.52 27.55 52.8 16.39 31.41 0.59
GB FIB 0.5 7060 33.44 −2843 −13.47 −0.4

SVM SP500 0.55 401.25 19.69 359 17.62 0.89
SVM DAX 0.52 2901 27.58 −1040 −9.89 −0.36
SVM CL 0.54 26.47 50.73 18.83 36.09 0.71
SVM FIB 0.54 4640 21.98 11483 54.4 2.47

RF SP500 0.47 587.75 28.84 −317.5 −15.58 −0.54
RF DAX 0.5 2516 23.92 −1329 −12.63 −0.53
RF CL 0.52 20.79 39.84 34.17 65.48 1.64
RF FIB 0.51 9133 43.26 2237 10.6 0.24

TSVR_LIN SP500 0.21 4807.75 235.93 −2929 −143.74 −0.61
TSVR_LIN DAX 0.4 18386.5 174.78 −3456 −32.85 −0.19
TSVR_LIN CL 0.37 201.53 386.22 −111.25 −213.2 −0.55
TSVR_LIN FIB 0.48 41280 195.55 8503 40.28 0.21

TSVR_NONLIN SP500 0.22 4445.25 218.15 −2566.5 −125.95 −0.58
TSVR_NONLIN DAX 0.4 17421.5 165.61 −2734 −25.99 −0.16
TSVR_NONLIN CL 0.39 180.86 346.61 −91.49 −175.34 −0.51
TSVR_NONLIN FIB 0.47 41660 197.35 7483 35.45 0.18

As a next step, we evaluated the performance of the ensembles of each baseline predictor after
we performed the self-configuration step, setting as optimization metric the Accuracy as set up in
Algorithms 1 and 2. The results related to this experiment are shown in Table 7 and consider the
optimized individual classifiers versus the baselines again. This table shows the benefits of the
proposed adjustable parameters optimization approach (intra and hyper parameters), where, for
example, for the GB classifier, accuracy increased in classifying three markets, keeping the same
accuracy for the other market. It can also be seen that the MDD decreased for some markets.

Finally, the performances of our ensemble approach are reported in Table 8. Considering that
our ensemble makes its prediction only when all the predictors agree (complete agreement strategy),
the Coverage value indicates the percentage of days when we operated in the futures market (i.e., by
placing Sell or Buy operations). This means that in the remaining days we do not perform any
Buy or Sell operations (i.e., we performed Hold operations only). The reader may observe that the
results obtained by our ensemble approach are more robust with respect to those of single predictors
in most of the markets, especially because it is the only technique that yields positive returns for
all the markets. Moreover, it can be seen in Table 8 an improvement of the proposed approach
regarding the baselines and optimized classifiers, especially in terms of risk-base metrics (MDD and
RoMaD). This highlights the benefits of the proposed approach, which differs from the ones of the
literature by its total data-driven nature, where a bunch of procedures as features selection, parameters
tuning, and time series adjustments are automatically chosen based on data performance, maximizing
ensembles to do conservative investments with minimum losses. This means that the proposed
approach can be regarded as a trading strategy useful for novice traders, who are initially careful about
their investments.
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Table 7. Single predictors’ performance after a tuning process optimized by accuracy.

Strategy Market Accuracy MDD MDD (%) Return Return (%) RoMaD

BH SP500 – 601.75 29.53 473 23.21 0.79
BH DAX – 3102.5 29.49 51.5 0.49 0.02
BH CL – 34.29 65.71 −5.92 −11.35 −0.17
BH FIB – 6175 29.25 −3135 −14.85 −0.51

GB SP500 0.52 704.75 34.58 −309.5 −15.19 −0.44
GB DAX 0.51 4890.5 46.49 −2587 −24.59 −0.53
GB CL 0.54 24.13 46.24 9.81 18.8 0.41
GB FIB 0.5 12,553 59.46 −2733 −12.95 −0.22

SVM SP500 0.55 544.25 26.71 155 7.61 0.28
SVM DAX 0.51 4033 38.34 −2546 −24.2 −0.63
SVM CL 0.54 31.84 61.02 −4.97 −9.52 −0.16
SVM FIB 0.51 7245 34.32 3357 15.9 0.46

RF SP500 0.51 624.5 30.65 −500 −24.54 −0.8
RF DAX 0.51 4645.5 44.16 −3720 −35.36 −0.8
RF CL 0.5 23.82 45.65 11.39 21.83 0.48
RF FIB 0.5 7358 34.86 −553 −2.62 −0.08

TSVR_LIN SP500 0.21 4807.75 235.93 −2929 −143.74 −0.61
TSVR_LIN DAX 0.4 18,386.5 174.78 −3456 −32.85 −0.19
TSVR_LIN CL 0.37 201.53 386.22 −111.25 −213.2 −0.55
TSVR_LIN FIB 0.48 41,280 195.55 8503 40.28 0.21

TSVR_NONLIN SP500 0.22 4445.25 218.15 −2566.5 −125.95 −0.58
TSVR_NONLIN DAX 0.4 17421.5 165.61 −2734 −25.99 −0.16
TSVR_NONLIN CL 0.39 180.86 346.61 −91.49 −175.34 −0.51
TSVR_NONLIN FIB 0.47 41,660 197.35 7483 35.45 0.18

Table 8. Ensemble predictors’ performance after a tuning process optimized by accuracy.

Strategy Market Coverage Accuracy MDD MDD (%) Return Return (%) RoMaD

ENS SP500 0.63 0.57 406.5 19.95 485.75 23.84 1.19
ENS DAX 0.55 0.52 2184.5 20.77 9.5 0.09 0
ENS CL 0.57 0.55 17.56 33.65 13.19 25.28 0.75
ENS FIB 0.42 0.52 1655 7.84 2760 13.07 1.67

On the basis of the aforementioned considerations, Figure 2 shows the equity curves for the
considered markets. As far as our ensemble approach is concerned, results and discussions are
consistent with those in Table 8, whereas Buy and Hold results and discussions are consistent with
Table 6 or Table 7. The difference is that the equity curve indicates the cumulative return of the
underlying market within the considered OOS test data, whereas the results of the tables indicate the
final value over the entire period. As far as the DAX market is concerned, the reader may notice that,
although our proposed ensemble is slightly worse than the results of the BH approach, it shows a
positive return. The worse performance of our approach relies on the fact that we are maintaining the
same classifiers in the ensemble, no matter the market. We envision that a further step of the proposed
approach in the future is also performing a data-driven selection of classifiers in the ensemble according
to the market behavior.
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Figure 2. Equity curves.

5.2. Performance Metrics Trade Impact

In this part of the experiments, we report the trading results of our approach against the BH
benchmark when considering different performance metrics in Algorithms 1 and 2. Table 9 shows the
results, where we indicate, for each market, the best hyperparameters found for the ensemble (in blue),
classification metrics (in white) and risk and financial metrics (in green), together with BH metrics for
the same markets (in gray). With such a study, we investigate what is the best metric to consider when
optimizing the intra and hyper parameters of the proposed approach.

It can be seen from Table 9 that, for accuracy and return performance metrics, the risk is decreased
(better MDD) no matter the market used. However, the accuracy proved to be the best metric as we
have four better MDD metrics, three better returns, and three better RoMads, totalling ten wins against
two losses from BH. All the other metrics do not beat the BH more than the accuracy, but the results in
this table show that there is a correlation between high accuracy in the training of the ensemble and
a low risk in the trading real-world environment. This can be particularly noted from the results in
Table 8, where our proposed approach proved to be the only one who obtained positive returns in all
the markets. A solution like the proposed ensemble can be a good solution for initial investors who
want a trade-off between low risk and non-negative returns. This is explained because an ensemble
does not trade all the time (low coverage), so a better accuracy in these less frequent trading times
makes a more efficient and less risky trading system. These results are therefore further evidence of
the goodness and robustness of the proposed approach, especially in the presence of atypical and
unpredictable markets.
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Table 9. Comparison of the proposed approach against the Buy and Hold benchmark by considering different performance metrics in building the proposed
self-configurable ensemble.

Accuracy Buy and Hold Our Performance

market year walk train lags ica preacc accuracy coverage mdd mdd return return romad mdd mdd return return romad mdd return romad
size (%) comp (%) (%) (%) (%) (%) (%)

SP500 2016–2018 100 65 9 5 0.54 0.57 0.63 406.5 19.95 485.75 23.84 1.19 601.75 29.53 473 23.21 0.79 + + +

DAX 2016–2018 300 65 7 0 0.53 0.52 0.55 2184.5 20.77 9.5 0.09 0 3102.5 29.49 51.5 0.49 0.02 +

CL 2016–2018 200 80 7 5 0.5 0.55 0.57 17.56 33.65 13.19 25.28 0.75 34.29 65.71 −5.92 −11.35 −0.17 + + +

FIB 2016–2018 250 65 1 5 0.5 0.52 0.42 1655 7.84 2760 13.07 1.67 6175 29.25 −3135 −14.85 −0.51 + + +

Return Buy and Hold Our Performance

market year walk train lags ica preacc accuracy coverage mdd mdd return return romad mdd mdd return return romad mdd return romad
size (%) comp (%) (%) (%) (%) (%) (%)

SP500 2016–2018 300 80 1 3 0.57 0.55 0.54 452.25 22.19 220.5 10.82 0.49 601.75 29.53 473 23.21 0.79 +

DAX 2016–2018 300 70 3 5 0.55 0.52 0.6 2732 25.97 106 1.01 0.04 3102.5 29.49 51.5 0.49 0.02 + + +

CL 2016–2018 250 80 3 5 0.51 0.54 0.55 29.87 57.24 −10.09 −19.34 −0.34 34.29 65.71 −5.92 −11.35 −0.17 +

FIB 2016–2018 100 80 7 2 0.51 0.52 0.47 2495 11.82 4485 21.25 1.8 6175 29.25 −3135 −14.85 −0.51 + + +

RoMaD Buy and Hold Our Performance

market year walk train lags ica preacc accuracy coverage mdd mdd return return romad mdd mdd return return romad mdd return romad
size (%) comp (%) (%) (%) (%) (%) (%)

SP500 2016–2018 200 80 5 5 0.53 0.57 0.68 365.25 17.92 320.5 15.73 0.88 601.75 29.53 473 23.21 0.79 + +

DAX 2016–2018 200 60 9 5 0.52 0.56 0.42 972 9.24 2400 22.81 2.47 3102.5 29.49 51.5 0.49 0.02 + + +

CL 2016–2018 250 80 3 5 0.51 0.54 0.55 29.87 57.24 −10.09 −19.34 −0.34 34.29 65.71 −5.92 −11.35 −0.17 +

FIB 2016–2018 150 70 3 5 0.49 0.49 0.48 6975 33.04 −5930 −28.09 −0.85 6175 29.25 −3135 −14.85 −0.51

Return (%) Buy and Hold Our Performance

market year walk train lags ica preacc accuracy coverage mdd mdd return return romad mdd mdd return return romad mdd return romad
size (%) comp (%) (%) (%) (%) (%) (%)

SP500 2016–2018 300 80 1 3 0.57 0.55 0.54 452.25 22.19 220.5 10.82 0.49 601.75 29.53 473 23.21 0.79 +

DAX 2016–2018 300 70 3 5 0.55 0.52 0.6 2732 25.97 106 1.01 0.04 3102.5 29.49 51.5 0.49 0.02 + + +

CL 2016–2018 250 80 3 5 0.51 0.54 0.55 29.87 57.24 −10.09 −19.34 −0.34 34.29 65.71 −5.92 −11.35 −0.17 +

FIB 2016–2018 100 80 7 2 0.51 0.52 0.47 2495 11.82 4485 21.25 1.8 6175 29.25 −3135 −14.85 −0.51 + + +

MDD (%) Buy and Hold Our Performance

market year walk train lags ica preacc accuracy coverage mdd mdd return return romad mdd mdd return return romad mdd return romad
size (%) comp (%) (%) (%) (%) (%) (%)

SP500 2016–2018 250 65 9 2 0.54 0.56 0.56 315.25 15.47 156.5 7.68 0.5 601.75 29.53 473 23.21 0.79 +

DAX 2016–2018 150 65 1 4 0.5 0.53 0.5 3202 30.44 −2368.5 −22.52 −0.74 3102.5 29.49 51.5 0.49 0.02

CL 2016–2018 250 65 5 2 0.49 0.51 0.53 24.11 46.21 −5.47 −10.48 −0.23 34.29 65.71 −5.92 −11.35 −0.17 + +

FIB 2016–2018 200 80 3 0 0.49 0.47 0.41 5653 26.78 −3753 −17.78 −0.66 6175 29.25 −3135 −14.85 −0.51 +
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6. Conclusions

The high degree of complexity, dynamism, and the non-stationary nature of data involved in the
futures markets makes the definition of an effective prediction model a challenge. In order to face this
problem, this paper introduced an auto-configurable ensemble approach to significantly improve the
performance of trading. This is done through optimizing two sets of parameters in late and early past
data, returning customized ensembles that act by a complete agreement strategy in any kind of market.

By following a methodological experimental approach, our proposed automatic ensemble method
starts auto-tuning hyper parameters in late past data. Among these hyperparameters, we tune feature
selection parameters, which will return the best possible inputs for each classifier in the ensemble
and also time series parameters, which will present the best disposal of features for the classifiers.
As the last step, we tuned intrinsic classifiers parameters, creating powerful ensembles with classifiers
trained with recent past data. Such an automatic ensemble fine-tune model returns an ensemble
of best possible individual classifiers found in the training data, which can be applied for different
markets. All these parameters optimizations are done through a Walk Forward Optimization approach
considering the non-anchored modality. Results of trading in an out-of-sample data, spanning years
2016, 2017, and 2018 show that, despite the data complexity, the proposed ensemble model is able to
get good performance in the context of positive returns in all the markets taken into consideration,
being a good strategy for conservative investors who want to diversify, but keeping their investments
profitable. It also turned out that, in one market, the proposed approach fails at achieving better
trading performance than baselines. We believe that, in addition to select ad hoc hyper-parameters
and intra-parameters for each market, an automatic selection of new ad hoc classifiers to be used by
our proposed approach must also be done. We believe that this additional step can find new classifiers
useful to understand different natures of data from different markets.

As future works for this research, a straightforward direction in which we are already heading
lies within the domain of the Deep Learning ensembles. In fact, we are currently developing different
models of deep neural networks, with the aim of creating an ensemble of them and testing them
on the same out of sample markets data. Additionally, the investigation of other feature selection
optimizations and even the creation of an ad hoc methodology is in our future research goals. One more
path we are already exploring consists of applying the results of our ensemble to real trading platforms.
The goal is, on the one hand, to simulate the real earnings we would have obtained on the past data
and on a desired market. With the test being robust, on the other hand, the next step would be to
perform real-time trading in a certain number of markets. The platform we are already playing with is
MultiCharts (https://www.multicharts.com/). Moreover, one more possible future work can involve
the definition of multi-markets strategies, able to improve the prediction performance by diversifying
the investments or by using information about the behavior of many markets, in order to fine-tune the
kind of classifiers used or their predictions. Finally, as stated before, a data-driven selection of classifiers
for the ensemble, rather than just intrinsic and hyper parameters, is a promising research direction to
be done.
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