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Abstract: Nowadays, it is clear how the network services represent a widespread element, which is absolutely essential
for each category of users, professional and non-professional. Such a scenario needs a constant research
activity aimed to ensure the security of the involved services, so as to prevent any fraudulently exploitation
of the related network resources. This is not a simple task, because day by day new threats arise, forcing
the research community to face them by developing new specific countermeasures. The Intrusion Detection
System (IDS) covers a central role in this scenario, as its main task is to detect the intrusion attempts through an
evaluation model designed to classify each new network event as normal or intrusion. This paper introduces a
Probabilistic-Driven Ensemble (PDE) approach that operates by using several classification algorithms, whose
effectiveness has been improved on the basis of a probabilistic criterion. A series of experiments, performed
by using real-world data, show how such an approach outperforms the state-of-the-art competitors, proving its
better capability to detect intrusion events with regard to the canonical solutions.

1 INTRODUCTION

Cybersecurity is an increasingly crucial aspect in our
times that is greatly dependent on network services,
since they affect the everyday life, involving areas
such as industry, education, finance, medicine, and so
on. In such a scenario the Intrusion Detection Systems
(IDSs) (Buczak and Guven, 2016) covered an impor-
tant role, because their main task is to face the risks
related to unauthorized use of such services by ma-
licious people. Such systems have been designed in
order to overcome the limits of the canonical appro-
aches, such as, for instance, those based on authenti-
cation procedures, on data encryption, or on specific
rules (e.g., firewalls).

They operate by exploiting a number of techni-
ques aimed to detect anomalous activities related to a
single machine or to an entire network. Examples of
such techniques are the Neural Networks, the Fuzzy
Logic, the Genetic Algorithms, the Clustering Algo-
rithms, and the Support Vector Machines. In addi-
tion, hybrid techniques that combine several techni-
ques can be used.

It should be observed how, regardless of the used
approach, the intrusion detection represents a hard
task, due to the high dynamism and heterogeneity of
the involved scenarios, both in terms of network infra-

structure and possible attacks. Considering that many
attacks are quite similar to the behavior of the normal
activities, it is clear that it is difficult for a classifica-
tion model to distinguish one from another.

The proposed classification approach is based on
several state-of-the-art techniques and the event clas-
sification is performed on the basis of the probabilities
of possible outcomes of each classification. The aim
is to improve the capability of an IDS to detect intru-
sions. The scientific contribution given by this paper
is the definition of an ensemble approach of classifi-
cation able to evaluate a new event by exploiting se-
veral state-of-the-art classification algorithms, which
are driven by a probabilistic model.

2 BACKGROUND AND RELATED
WORK

The concept of intrusion has been well discussed
in (Bace and Mell, 2001), where the authors des-
cribe it as an activity aimed to compromise or by-
pass the security policies that regulate a network or
a single machine. As defined in many authoritative
studies (Pfleeger and Pfleeger, 2012), computer secu-
rity attempts to ensure three main aspects: confiden-
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tiality, integrity, and availability, which are compro-
mised (one or more) by an intrusion.
• Confidentiality: it grants that the resources, provi-

ded by a single machine or a network, are acces-
sed only by the authorized users.

• Integrity: it grants that such resources can be mo-
dified only by the authorized users, according to
the permissions with which they have been made
available.

• Availability: it grants that such resources are avai-
lable to authorized users in accordance with the
established times, without any unwanted interrup-
tion or limitation.
An Intrusion Detection System (IDS) is aimed to

analyze the network traffic or the activity of a single
machine in order to discover non-authorized activi-
ties. Such activities can be originated by a malware
(e.g., a virus) or can be related to an human attack
(e.g., the attempt to gain an access to a resource) ope-
rated locally or remotely.

According to the literature (Ghorbani et al., 2010),
there are several aspects that can be used to classify
the IDSs, as reported in Table 1. Such aspects cove-
red two different areas, functional and non-functional.
Functional because they refer to intrinsic IDS charac-
teristics, whereas non-functional because they refer to
external characteristics that are not strictly related to
the IDS.

Table 1: IDSs Classification.

Aspect Possibilities Area

Detection Approach Anomaly, Misuse, or Specification-based Functional

System Modality Host, Network, Network-Node, or Hybrid based Functional

System Response Passive or Active Functional

System Activity Continuous or Periodic Non-functional

On the basis of the adopted detection approach,
the IDSs can be classified into three categories (Ghor-
bani et al., 2010):

1. Anomaly Detection approach (Bronte et al., 2016;
Holm, 2014), also known as Signature-based De-
tection approach, operates by comparing the new
events to a set of signatures related to a series of
known intrusion events;

2. Misuse Detection approach (Garcia-Teodoro
et al., 2009; Viegas et al., 2017), also known
as Anomaly-based Detection approach, works
on the basis of a model able to characterize the
normal activities, which is used to detect intrusion
attempts in the new events;

3. Specification-based Detection approach (Uppu-
luri and Sekar, 2001; Sekar et al., 2002) operates
by defining the allowed behavior of the systems in
the IDS area, considering as intrusion the events
that does not respect it. This approach has been

designed to combine the strengths of the Anomaly
Detection and Misuse Detection approaches.

On the basis of its operative modality an IDS can
operate as follows:

• Host-based modality (Bukac et al., 2012): it ope-
rates by exploiting a number of agents installed
on a single machine that belongs to the network
to be monitored. In this case, all events on the
machine (e.g., active processes, log files, configu-
ration alteration, etc.) are analyzed by the agents
and the result is compared to a series of known at-
tack patterns stored in a database. When an attack
is detected, the system can send an alert or can
activate appropriate countermeasures. Such a mo-
dality allows a system to use many agents in order
to gain a higher level of protection, with the possi-
bility to perform a more detailed configuration of
them. A system that adopts this modality is named
as Host-based Intrusion Detection System (HIDS)
and its main disadvantages are the excessive num-
ber of false positives and false negatives, and the
latency between when the event occurs and when
it is processed.

• The Network-based modality (Das and Sarkar,
2014): it operates by monitoring and analyzing
the network traffic in order to detect any attempt
of intrusion. In this case, a twofold approach is
followed: first a new event is compared with a
database of known patterns (signature matching)
and, when this operation fails, it is analyzed in
order to detect anomalies (network analysis). It
allows a system to detect also unknown attacks
and the result can be a simple notification or the
activation of automatic countermeasures, such as,
for instance, the block of the IP address of the
machine that is performing the attack. A system
that adopts this modality is named Network In-
trusion Detection System (NIDS) and the related
disadvantages are the difficulty to well operate in
networks characterized by a high level of traffic,
since they have to analyze all the involved pac-
kets, and its inability to analyze encrypted data.
Such a system can not operate proactively, be-
cause an attack can be detected only after it be-
gins.

• The Network-Node-based modality (Potluri and
Diedrich, 2016): it operates by analyzed the net-
work traffic of a single network node. It is dif-
ferent from the HIDS and NIDS modalities, since
in this case the traffic taken into account does not
belong to a single machine or the entire network,
but it is related to a precise node of the network,
usually chosen for its strategical position. It can
be considered a mix of the aforementioned HIDS
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and NIDS modalities, and a system that adopts it
is defined Network Node Intrusion Detection Sy-
stem (NNIDS).

• The Hybrid-based modality (Amrita and Ravu-
lakollu, 2018): it combines yhe aforementioned
modalities to improve the system performance. In
such a context, the systems are usually defined as
Hybrid Intrusion Detection Systems or as Distri-
buted Intrusion Detection Systems.

An intrusion event detected by an IDS can lead
toward a passive or active response (Bijone, 2016), as
detailed in the following.

• Passive response: an IDS only sends alerts to se-
curity managers, without triggering any automatic
countermeasure.

• Active response: an IDS operates by performing
specific countermeasures, e.g., by closing a net-
work connection or a process.

The system activity is another criterion adopted to
classify the IDSs, as reported in the following.

• Continuous Activity: systems included in this
group are those that collect and process the events
in real-time. It means that such systems con-
stantly monitor the area in which they operate-

• Periodic Activity: IDSs that not process the col-
lected events in real-time but periodically are in-
cluded in this group.

Ensemble Methods: Literature reports that the com-
bined approaches are usually adopted in order to im-
prove the classification performance. It means that
an ensemble strategy commonly gets better perfor-
mance than that based on a single approach (Diette-
rich, 2000; Zainal et al., 2008). However, it should be
noted that it is not the norm, since a combination of
approaches can also worsen the classification perfor-
mance (Gomes et al., 2017).

The ensemble process is performed by using a de-
pendent framework (i.e., the construction of each ap-
proach depends on the output of the previous one)
or by using an independent framework (i.e., the con-
struction of each approach is independent of the other
ones) (Sagi and Rokach, 2018). In this paper we take
into account only this last type of framework.

In the context of the intrusion detection the ensem-
ble solutions are aimed to improve the detection of the
intrusion attempts, reducing at the same time the num-
ber of misclassification. Such solutions are imple-
mented by following two steps: in the first step a set of
approaches is defined on the basis of their result com-
plementarity (i.e., different correct and wrong classi-
fications); in the second step the single results of the
approaches are combined into one by using a strategy

(e.g., full agreement, majority voting, or weighted vo-
ting).

It should be noted how some approaches (e.g.,
Gradient Boosting and AdaBoost) work by following
ensemble criteria, by exploiting an ensemble of weak
prediction approaches (Guo et al., 2017).
Evaluation Metrics: Literature reports a number of
metrics adopted in order to evaluate the IDS perfor-
mance, as well as several datasets used in this pro-
cess (Munaiah et al., 2016). Considering that the main
objective of an IDS is the correct classification of the
events in two classes (i.e., normal and intrusion), me-
trics aimed to evaluate the binary classifiers, such as
those based on the confusion matrix1 (i.e., F-score,
Accuracy, Sensitivity, and Specificity), or those able
to assess the effectiveness of the adopted classifica-
tion model (i.e., ROC and AUC2) are usually used.

In addition, many works take also into account ot-
her aspects, such as those related to the IDS perfor-
mance, by evaluating, for instance, the computational
load, the computational time, or the memory usage.
Together with the aforementioned functional aspects,
further metrics can be taken into account to evaluate
some financial aspects, such as, for instance, the costs
related to the needed hardware and software or those
related to the IDS administration (Sommer, 1999).

The systematic literature review performed
in (Munaiah et al., 2016) shows that there is not an
unique criterion to evaluate the performance of an
IDS, whereas it is fairly common to use more than
one metric to evaluate the proposed approaches.
Open Problems: We have previously highlighted
how the intrusion detection task is not easy, mainly for
the characteristics of the domain taken into account,
which presents an high degree of dynamism and he-
terogeneity. In addition, we underlined how many in-
trusion attempts follow a behavior similar to that of
the normal activities, therefore it is not simple for an
IDS to correctly detect the intrusions. Some major is-
sues related to the state-of-the-art solutions have been
summarized in the following:
• one of the most important issues is related to the

Anomaly Detection approach. It mainly depends
on the difficulty to define, exhaustively, a signa-
ture for each possible intrusion event. It leads to-
wards a huge number of false alarms;

• another issue arises in the context of the Misuse
Detection approach. It is related to the inability
for the system to recognize unknown intrusion

1A matrix 2x2 where are reported the number of True
Negatives (TN), False Negatives (FN), True Positives (TP),
and False Positives (FP).

2Respectively, Receiver Operating Characteristic and
Area Under the Receiver Operating Characteristic.
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patterns, and this prevents the detection of novel
type of intrusion attempts;

• considering that the Specification-based approach
combines the Anomaly Detection and Misuse De-
tection approaches, it inherits the aforementioned
issues.
As far as the aforementioned problems are con-

cerned, there is the issue related to the observation
that many intrusion detection approaches are desig-
ned to operate with a specific class of attacks. This
goes against the real-world scenarios, which are cha-
racterized by a various classes of attacks, also by con-
sidering the zero-day ones.

For this reason the ensemble approach proposed
in this paper has been designed to operate in a hete-
rogeneous scenario in terms of classes of attacks, and
therefore, its performance has been evaluated both in
terms of single class of attacks and in terms of all clas-
ses of attacks, by using a real-world dataset.

3 NOTATION AND PROBLEM
DEFINITION

This section reports the formal notation adopted in
this paper together with the formalization of the fa-
ced problem.

Formal Notation: Given a set of classified events
E = {e1,e2, . . . ,eN}, we denote as E+ the subset of
legitimate ones (then E+ ⊆ E), and as E− the subset
of anomalous ones (then E− ⊆ E).

Each event e ∈ E is composed by a set of values
V = {v1,v2, . . . ,vM} and each event can belong only
to one class c ∈C, where C = {normal, intrusion}.

We also denote a set of of unclassified events Ê =
{ê1, ê2, . . . , êU} and a set of classification algorithms
A = {a1,a2, . . . ,aZ}.

Problem Definition: First, we denote as Ξ the
event classification process performed by our appro-
ach. Second, we define a function EVAL(ê,Ξ) able to
evaluate the correctness of the classification by the re-
turned boolean value β (0=misclassification, 1=cor-
rect classification). Finally, our problem can be for-
malized as maximization of the sum of the returned
values, as shown in Equation 1.

max
0≤β≤|Ê|

β =
|Ê|
∑

u=1
EVAL(êu,Ξ) (1)

4 IMPLEMENTATION

The probabilistic model used to drive the classifica-
tion performed by our ensemble approach is based on

the Logistic Regression algorithm. In more detail, a
logistic model has been used in order to evaluate the
probability of a binary response based on more inde-
pendent predictors (i.e., the adopted state-of-the-art-
approaches). More formally, we evaluate the proba-
bility that an unevaluated event ê ∈ Ê belongs to a
predicted class c∈C by mapping the predicted values
to probabilities by using the sigmoid σ function3.

Such a function is able to map any real value into
[0,1] and it is largely used in machine learning to map
predictions to probabilities. It is shown in Equation 2,
where σ(az(p)) denotes the probability estimate for
the prediction p made by the algorithm az and expres-
sed in the range [0,1], and e is the base of natural log.

σ(az(p)) =
1

1+ e−p (2)

According to Equation 2, we define our probabi-
listic model by following the criterion indicated in
Equation 3, where Z denotes the number of algo-
rithms (i.e., Z = |A|) used to classify an event ê ∈ Ê
by using our ensemble approach, and c(ê) denotes the
classification given to the event ê.

σ = 1
Z ·

Z
∑

z=1
σ(az(p))

wn =
Z
∑

z=1
1 i f σ(az(p))> σ ∧ az(p) = normal

wi =
Z
∑

z=1
1 i f σ(az(p))< σ ∨ az(p) = intrusion

c(ê) =

{
normal, if wn > wi

intrusion, otherwise

(3)

Our model is aimed to exclude from the classifica-
tion process those algorithms characterized by a low
level of probability in their predictions, combining the
effectiveness of the most performing ones through a
weighted probabilistic criterion.

On the basis of the probabilistic model, previously
formalized, the unevaluated events in Ê are classified
by using the Algorithm 1.

It takes as input the set of adopted evaluation al-
gorithms A, the set of past classified events E, and the
event to evaluate ê. It returns the classification (i.e.,
as normal or intrusion) of the event ê.

5 EXPERIMENTS

This section describes the environment used to per-
form the experiments, the adopted real-world dataset,
the metrics used for the performance evaluation, the
experimental strategy, and the obtained results, which
are discussed at the end.

3A mathematical function having a characteristic sig-
moid curve.
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Algorithm 1: Transaction classi f ication.
Input: A=Set of algorithms, E=Past classified events, ê=Event to evaluate
Output: result=Event ê classification
1: procedure CLASSIFICATION(A, E, ê)
2: w1← 0
3: w2← 0
4: models = trainingModels(A,E)
5: predictions = getPredictions(models, ê)
6: µ← getProbabilityAverage(predictions)
7: for each p in predictions do
8: if getProbability(p)> µ ∧ p == normal then
9: w1← w1 +1
10: else
11: w2← w2 +1
12: end if
13: end for
14: if w1 > w2 then
15: result← normal
16: else
17: result← intrusion
18: end if
19: return result
20: end procedure

5.1 Environment

The approach proposed in this paper has been deve-
loped in Python, as well as the implementation of
the state-of-the-art classification techniques used to
define our ensemble approach, which are based on
scikit-learn 4. In order to make our experimental re-
sults reproducible, we have set the seed of the pseudo-
random number generator used by the scikit-learn
evaluation algorithms.

5.2 Dataset

The real-world dataset used to evaluate the propo-
sed approach is NSL-KDD5. It represents an improved
version of the old KDD-CUP99, which in addition to
being dated it presents some problems (Wang et al.,
2014) that do not make it suitable for the evaluation
of the recent IDSs. The most significant issue related
to the former version of the dataset is the data redun-
dancy. It means that both the training and test sets
include a big number of duplicate events and these
influence the machine learning approaches, reducing
their capability to detect the less frequent events cor-
rectly.

These issues have been addressed in the NSL-
KDD as follows: (i) there are not redundant events
in the train and test sets; (ii) the number of events
that belong to each difficulty level group is inversely
proportional to the percentage of events present in the

4http://scikit-learn.org
5https://github.com/defcom17/NSL KDD

former dataset; (iii) the events in the train and test
sets are enough to perform the experiments without
the need to use a subset of them (operation usually
done in the former dataset in order to reduce the com-
putational complexity). Such improvements mitigate
the aforementioned issues and are able to reproduce
a typical real-world scenario that allow us to evaluate
the performance of the proposed approach and that of
the competitors.

An overview of the dataset characteristics is
shown in Table 2, where we can observe its compo-
sition in terms of normal (i.e., set |E+|) and intrusion
(i.e., set |E−|) events. It should be observed how the
cardinality of classes (i.e., set |C|) is different in the
training and test sets, since some classes of events are
present in a dataset and not in the other one, and vice
versa.

Table 2: Dataset Overview.

Dataset Total events Normal Intrusion Values Classes
|E| |E+| |E−| |V | |C|

Training 125,973 67,343 58,630 41 23
Test 22,543 9,710 12,833 41 38

Total 148,516 77,053 71,463

An analysis of the distribution of event types is
shown in Table 3, where we have grouped all types of
events into the following categories:
- Privilege Escalation Attack (PEA): this category

contains all the attacks aimed to obtain a privileged
access by starting from an unprivileged status, as it
happens, for instance, in a buffer overflow attack;

- Denial of Service Attack (DSA): this category inclu-
des all the attacks aimed to stop a service/system
by using a very high number of legitimate requests,
e.g., as it happens in a syn flooding attack;

- Remote Scanning Attack (RSA): this category clas-
sifies the attacks conducted to obtain information
about one or more services/systems, by adopting
non-invasive and invasive techniques, e.g., as it hap-
pens during a port scanning activity;

- Remote Access Attack (RAA): this category clas-
sifies all the attacks where the goal is to gain an
access to a remote system, without using sophisti-
cate techniques, e.g., by using a brute-force attack
to guess the user credentials;

- Normal Network Activity (NNA): this last category
contains the normal activity, then all the legitimate
network traffic not related to intrusion attempts.

In more detail, in the context of the NSL-KDD da-
taset, the aforementioned four categories of intrusion
events are related to the following major attacks:
- PEA: Buffer overflow, Loadmodule, Rootkit, Perl,

Sqlattack, Xterm, and Ps;
- DSA: Back, Land, Neptune, Pod, Smurf, Teardrop,

Mailbomb, Processtable, Udpstorm, Apache2, and
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Worm;
- RSA: Satan, IPsweep, Nmap, Portsweep, Mscan,

and Saint;
- RAA: Guess password, Ftp write, Imap, Phf, Mul-

tihop, Warezmaster, Xlock, Xsnoop, Snmpguess,
Snmpgetattack, Httptunnel, Sendmail, and Named.

Table 3: Events Distribution.

Event Training Test Type Event Training Test Type

01 apache2 0 737 DSA 21 processtable 0 685 DSA

02 back 956 359 DSA 22 ps 0 15 PEA

03 buffer overflow 30 20 PEA 23 rootkit 10 13 PEA

04 ftp write 8 3 RAA 24 saint 0 319 RSA

05 guess passwd 52 1231 RAA 25 satan 3633 735 RSA

06 httptunnel 0 133 RAA 26 sendmail 0 14 RAA

07 imap 11 1 RAA 27 smurf 2646 665 DSA

08 ipsweep 3599 141 RSA 28 snmpgetattack 0 178 RAA

09 land 18 7 DSA 29 snmpguess 0 331 RAA

10 loadmodule 9 2 PEA 30 sqlattack 0 2 PEA

11 mailbomb 0 293 DSA 31 spy 2 0 RAA

12 mscan 0 996 RSA 32 teardrop 892 12 DSA

13 multihop 7 18 RAA 33 udpstorm 0 2 DSA

14 named 0 17 RAA 34 warezclient 890 0 RAA

15 neptune 41214 4657 DSA 35 warezmaster 20 944 RAA

16 nmap 1493 73 RSA 36 worm 0 2 DSA

17 perl 3 2 PEA 37 xlock 0 9 RAA

18 phf 4 2 RAA 38 xsnoop 0 4 RAA

19 pod 201 41 DSA 39 xterm 0 13 PEA

20 portsweep 2931 157 RSA 40 normal 67343 9710 NNA

Table 4 summarises the information previously
presented in Table 3. It gives us a measure about the
relevance of each class of attacks in the dataset.

Table 4: Events Overview.

Dataset PEA DSA RSA RAA NNA

Training 52 45,927 11,656 994 67,343
Test 67 7,460 2,421 2,885 9,710

Total 119 53,387 14,077 3,879 77,053
% 0.08 35.95 9.48 2.61 51.88

5.3 Strategy

Algorithms Selections: The five competitor algo-
rithms Multilayer Perceptron (MLP), Decision Tree
(DTC), Adaptive Boosting (ADA), Gradient Boosting
(GBC), and Random Forests (RFC), have been se-
lected in order to have different classification techni-
ques and they include the most performing ones. Con-
sidering that the differences between the results given
by our PDE approach and those given by the single
competitor approaches were almost the same even af-
ter a parameter tuning, all the experiments have been
conducted by using the default scikit-learn values.
Data Preprocessing: Before the experiments, we
converted all the categorical dataset features into a nu-
merical form and, in addition, in order to be able to
perform a binary classification task, we added a new
feature (i.e., named class) that represents the two pos-
sible categories an event can be categorized (i.e., 1 =
normal and 2 = intrusion).
Evaluation Criterion: Considering that the canoni-
cal k-fold cross-validation criterion used to reduce the

Table 5: Events Detection Performance.

Approach Events T NR F-score AUC Average

Multilayer Perceptron (MLP) PEA 0.178 0.187 0.589 0.318
Decision Tree (DTC) PEA 0.484 0.468 0.742 0.565
Adaptive Boosting (ADA) PEA 0.496 0.565 0.748 0.603
Gradient Boosting (GBC) PEA 0.369 0.410 0.684 0.488
Random Forests (RFC) PEA 0.288 0.374 0.644 0.435
PDE PEA 0.610 0.516 0.805 0.644

Multilayer Perceptron (MLP) DSA 0.964 0.969 0.974 0.969
Decision Tree (DTC) DSA 0.991 0.994 0.994 0.993
Adaptive Boosting (ADA) DSA 0.990 0.993 0.994 0.992
Gradient Boosting (GBC) DSA 0.991 0.994 0.994 0.993
Random Forests (RFC) DSA 0.988 0.993 0.993 0.991
PDE DSA 0.993 0.993 0.994 0.993

Multilayer Perceptron (MLP) RSA 0.897 0.848 0.929 0.891
Decision Tree (DTC) RSA 0.977 0.980 0.987 0.981
Adaptive Boosting (ADA) RSA 0.974 0.977 0.985 0.979
Gradient Boosting (GBC) RSA 0.971 0.976 0.984 0.977
Random Forests (RFC) RSA 0.971 0.980 0.985 0.979
PDE RSA 0.988 0.971 0.989 0.983

Multilayer Perceptron (MLP) RAA 0.345 0.303 0.663 0.437
Decision Tree (DTC) RAA 0.851 0.858 0.924 0.878
Adaptive Boosting (ADA) RAA 0.803 0.846 0.901 0.850
Gradient Boosting (GBC) RAA 0.836 0.858 0.917 0.870
Random Forests (RFC) RAA 0.846 0.876 0.923 0.882
PDE RAA 0.885 0.834 0.940 0.886

Multilayer Perceptron (MLP) NNA 0.885 0.900 0.908 0.898
Decision Tree (DTC) NNA 0.969 0.979 0.981 0.976
Adaptive Boosting (ADA) NNA 0.947 0.965 0.967 0.960
Gradient Boosting (GBC) NNA 0.966 0.978 0.979 0.974
Random Forests (RFC) NNA 0.964 0.978 0.980 0.974
PDE NNA 0.980 0.976 0.977 0.978

impact of the data dependency during the experiments
does not work in the case of time series data, since it
does not take into account the event chronology, we
adopted a different approach based on the TimeSe-
riesSplit scikit-learn functionalities. It is a time se-
ries cross-validation criterion able to divide a dataset
into n splits training and test sets, respecting the data
chronology. In our case we used TimeSeriesSplit with
n splits=10.

5.4 Metrics

According to the considerations made in Section 2,
setting the focus on the functional aspect, we evalua-
ted the performance of the proposed approach on the
basis of three metrics. The first considered metric is
the Specificity (true negative rate) as it is more cru-
cial to perform a correct classification of the intrusion
events rather than normal events, and, therefore, it is
better to adopt a prudent policy preferring to get more
false negative than false positives. The second con-
sidered metric is the F-score metric, since it offers
an overview in terms of Accuracy and Recall perfor-
mance. The last metric taken into account is AUC,
since it is able to evaluate the capability of an evalua-
tion model to distinguish between two different clas-
ses of events (i.e., normal and intrusion).
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Table 6: Ensemble Strategies Performance.

Strategy Events T NR F-score AUC Average

Full Agreement PEA 0.048 0.081 0.524 0.218
Majority Voting PEA 1.000 0.003 0.500 0.501
Weighted voting PEA 0.409 0.521 0.705 0.545
PDE PEA 0.610 0.516 0.805 0.644

Full Agreement DSA 0.972 0.980 0.982 0.979
Majority Voting DSA 1.000 0.581 0.500 0.694
Weighted voting DSA 0.990 0.994 0.994 0.993
PDE DSA 0.993 0.993 0.994 0.993

Full Agreement RSA 0.900 0.927 0.946 0.924
Majority Voting RSA 1.000 0.269 0.500 0.590
Weighted voting RSA 0.974 0.979 0.985 0.979
PDE RSA 0.989 0.971 0.990 0.983

Full Agreement RAA 0.312 0.409 0.656 0.454
Majority Voting RAA 1.000 0.089 0.500 0.530
Weighted voting RAA 0.837 0.871 0.918 0.878
PDE RAA 0.885 0.837 0.940 0.886

Full Agreement NNA 0.931 0.946 0.950 0.935
Majority Voting NNA 1.000 0.650 0.500 0.717
Weighted voting NNA 0.963 0.977 0.978 0.972
PDE NNA 0.980 0.975 0.976 0.978

Table 7: F-score and AUC Differences.

Events F-score AUC

PEA − 0.005 + 0.100
DSA − 0.001 + 0.000
RSA − 0.007 + 0.004
RAA − 0.039 + 0.020
NNA − 0.000 − 0.001

Average − 0.010 + 0.025

5.5 Results

The performed experiments were aimed to evaluate
the performance of several state-of-the-art approaches
when they are used in order to distinguish the intru-
sion events from the normal ones.

We performed this operation in two phases, initi-
ally by taking into account all normal events together
with those related to a single class of intrusions, then
by using all normal events together with those related
to all classes of intrusions.

The experimental results are reported in Table 5
and Table 6, where, respectively, our approach has
been compared to each single approach, then it has
been compared to the canonical ensemble strategies.
In such tables, the best average performances are
highlighted in bold.

Premising that all the experiments have been made
by following the time series cross-validation criterion
described in Section 5.3, the analysis of the obtained
results leads towards the following considerations:

• the results shown in Table 5 indicate that our PDE
approach outperforms each single state-of-the-art
approaches in terms of average performance (i.e.,
TNR, F-score, and AUC), except in the case of

the DSA events, where it reaches the same per-
formance of the best competitors;

• the results shows in Table 6 indicate that our PDE
approach also outperforms all canonical ensemble
strategies in terms of average performance, except
in the case of the DSA events, where it reaches the
same performance of the best competitors;

• the results shown in Table 7 indicate that such an
improvement in terms of TNR (i.e., Specificity)
does not lead to significant reduction of the clas-
sifier performance in terms of F-score and AUC,
since although we have a moderate worsening in
terms of average F-score (i.e., − 0.01), we get
an improvement in terms of average AUC (i.e.,
+ 0.02);

• considering that the adopted real-world dataset
contains a large number of events related to intru-
sion events, as reported in Table 2, the obtained
improvement allows a system to detect a signifi-
cant number of attacks that otherwise would not
have been detected;

• the last consideration should be made about the
False Negative Rate (FNR) (i.e., the Miss Rate)
related to our approach, in order to verify that the
increase of the True Negative Rate (i.e., the Spe-
cificity) is not correlated with an equal increase
of this value (i.e., the FNR): the experimental re-
sults report an average FNR of 0.007, whereas our
average TNR is 0.056;

• the TPR and FNR rates indicate that a very low
percentage of the new detected intrusions leads to-
wards false alarms, also by considering that, pru-
dentially, in the context taken into account the
false negative classifications are preferable to the
false positive ones.

6 CONCLUSIONS

The ensemble approach proposed in this paper has
been designed to maximize the capability to detect in-
trusion events, independently from the operative sce-
nario, exploiting several evaluation models in order
to differentiate the normal events from those related
to all classes of attacks.

The results show how the proposed ensemble ap-
proach outperforms the single classifiers in terms of
Specificity, without being significantly penalized in
other aspects, because it gets a slight deterioration in
terms of average F-score but a positive average AUC
(wrt the competitor approaches), demonstrating the
effectiveness of our evaluation model.

Some ongoing efforts we are already focusing on
are related to the employment of deep learning techni-

A Probabilistic-driven Ensemble Approach to Perform Event Classification in Intrusion Detection System

147



ques and frameworks (e.g. TensorFlow, Keras) on ad-
hoc hardware (e.g. NVidia GPUs) in order to further
improve the proposed approach.
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