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ABSTRACT
The increase of consumer credit has made it necessary to research
more and more effective models for the credit scoring. Such models
are usually trained by using the past loan applications, evaluating
the new ones on the basis of certain criteria. Although the state of
the art offers several different approaches for their definition, this
process represents a hard challenge due to several reasons. The
most important ones are the data unbalance between the default
and the non-default cases that reduces the effectiveness of almost
all techniques, and the data heterogeneity, which makes it difficult
the definition of a model able to effectively evaluate all the new
loan applications. The approach proposed in this paper faces the
aforementioned problems by moving the evaluation process from
the canonical time domain to a frequency one, using a model based
on the past non-default loan applications. It allows us to overcome
the data unbalance problem by exploiting only a class of data, also
defining a model that is less influenced by the data heterogeneity.
The performed experiments show interesting results, since the pro-
posed approach achieves performance closer or better than that of
one of the best state-of-the-art approaches of credit scoring, such
as random forests, although it operates in a proactive way, only by
exploiting the past non-default cases.
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1 INTRODUCTION
A credit scoring process is aimed to evaluate, in terms of reliability,
a new loan application (from now on simply named as instance), and
from its result depends the acceptation or non acceptation of it. It is
clear how the effectiveness of such models is strongly related to the
gains and losses of the involved financial operators [24], especially
in these last years characterized by an increasing use of the consumer
credit, which is obviously correlated with that of the defaulted cases
(i.e., loans that have been fully or partially not repaid). An ideal
approach of credit scoring should be able to correctly classify the
new instances into two classes, accepted or rejected), on the basis of
the information given by the past instances.

In other words, the credit scoring techniques can be considered a
set of statistical tools able to calculate the probability that an instance
leads toward a default case [26, 35], allowing the financial operators
to evaluate the credit risk [20] and to monitor the credit activities [8].

The definition of effective credit scoring models represents a hard
challenge due to several problems, the most important of which is
the imbalance in the data used during the model training process [4].
It means that these data sources are composed by a small number of
default cases and a big number of non-default ones, an unbalanced
configuration that reduces the effectiveness of almost all the machine
learning approaches [28].

The idea behind this paper is to move the process of evaluation of
the new instances from the canonical time domain to the frequency
one, performing the spectral analysis through the Fourier transfor-
mation [19]. It is performed by using the Fast Fourier Transform
(FFT ) algorithm, which allows us to move a time series (i.e. in our
case, a sequence of discrete-time data represented by the feature
values of an instance) from its original time domain to a frequency
one, where we can study the data from a different point of view.

Considering that the model used in the process of evaluation
of the new instances is defined only by using a class of data (the
non-default cases), such approach offers a threefold advantage: it
allows us to operate proactively, it faces the problems related to the
cold-start issue (i.e., the scarcity or absence of default cases), and
it reduces the issues related to the data heterogeneity, because their
new representation in the frequency domain is less influenced by the
data variation. We compare our approach to the Random Forests one,
since in most cases reported in literature [5, 9, 32] it outperforms
the other credit scoring approaches.

The main key contributions of this paper are listed below:

(i) definition of the time series to be used in the Fast Fourier
Transform (FFT ) process, made on the basis of the data that
compose each instance in the considered datasets;

(ii) formalization of the Fourier spectral analysis comparison pro-
cess, performed in terms of frequency magnitude difference
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measured between the time series in the set of the past non-
default instances and that in an unevaluated one;

(iii) definition of the Dynamic Feature Selection (DFS) process,
aimed to assign a different weight to each frequency com-
ponent of the previously extracted instance spectrum, on the
basis of their relevance (in terms of entropy) in the evaluation
process;

(iv) formalization of the Fourier Spectrum Pattern (FSP) algorithm
able to classify the new instances as accepted or rejected by
exploiting the previous spectral analysis, the DFS process, and
the tolerance range ρ.

The remainder of the paper is organized as follows: Section 2
discusses the background and related work; Section 3 provides a for-
mal notation, makes some premises, and defines the faced problem;
Section 4 describes the implementation of the proposed approach;
Section 5 provides details on the experimental environment, on
the used datasets and metrics, as well as on the adopted strategy
and the chosen competitor, reporting the experimental results at the
end; some concluding remarks and future work are given in the last
Section 6.

2 BACKGROUND AND RELATED WORK
Recent literature proposes numerous classification techniques able
to operate in the credit scoring context [18], as well as a big number
of studies aimed to evaluate their performance [32], also by taking
into account the optimal configuration of the involved parameters [2]
and the metrics to be used in order to evaluate the performance [22].

The two most important advantages derived from the adoption
of credit scoring techniques [40] are the capability to infer when it
is reasonable (in terms of potential risks) to grant a loan to some-
one, and the capability to define models able to infer the customer
behavior, information that can be used to propose targeted financial
services. In the context of this paper we take into account only the
first one.

2.1 Credit Scoring Models
In order to perform a credit scoring process it is possible to exploit
many state-of-the-art techniques usually used in the statistic and
data mining fields [1, 10]. Some significant examples are the lin-
ear discriminant models [38], the logistic regression models [26],
the neural network models [6, 16], the genetic programming mod-
els [11, 36], the k-nearest neighbor models [25], and the decision
tree models [14, 46].

It should be observed that in many cases these techniques can
be combined in order to define hybrid approaches of credit scoring.
Some examples are the techniques that exploit the neural networks
and the clustering methods, presented in [27], and the two-stage
hybrid modeling procedure with artificial neural networks and multi-
variate adaptive regression splines, proposed in [31, 45].

2.2 Imbalanced Class Distribution
One of the most important problems that makes it difficult the defi-
nition of effective models for the credit scoring is the imbalanced
class distribution of data [23, 28]. This issue is given by the fact
that the data used in order to train the models are characterized by a
small number of default cases and a big number of non-default ones,

a distribution of data that limits the performance of the classification
techniques [9, 28].

This problem leads toward misclassification costs, as reported
in [44], which proposes to preprocess the training data through
an over-sampling or under-sampling of the classes, as a possible
solution.

The effect of such preprocessing activity on the performance has
been studied in [12, 34].

2.3 Cold Start
The cold start issue [17, 47] arises when there is not enough infor-
mation to train a reliable model about a domain. In the context of
the credit scoring, such scenario appears when the data used to train
the model are not representative of all classes of data [3, 43] (i.e.,
default and non-default cases).

This kind of issue affects many areas, e.g., those related to the
recommender systems [21, 33, 42], since they are usually based on
models defined on the basis of the previous choices of the users (user
profiles), similarly to the credit scoring context, where the past loan
applications are taken into account.

In the approach proposed in this paper the cold start issue can be
reduced/overcome by using only a class of data during the model
definition process (i.e., only the non-default cases in the training
dataset).

2.4 Random Forests
Since its formalization [7], Random Forests represents one of the
most common techniques for data analysis, thanks to its better per-
formance compared to the other state-of-the-art techniques.

This technique represents an ensemble learning method for classi-
fication and regression that is based on the construction of a number
of randomized decision trees during the training phase and it infers
conclusions by averaging the results.

It is able to face a wide range of prediction problems, without
performing any complex configuration, since it only requires the
tuning of two parameters: the number of trees and the number of
attributes used to grow each tree.

2.5 Fourier Transform and Spectral Analysis
The basic idea behind the approach proposed in this paper is to move
the process of evaluation of the new instances (time series) from
their canonical time domain to the frequency one, in order to obtain
a representative pattern composed by their frequency components,
as shown in Figure 1.

This operation is performed by recurring to the Discrete Fourier
Transform (DFT ), whose formalization is shown in Equation 1,
where i is the imaginary unit.

Fn
def
=

N−1

∑
k=0

fk · e−2πink/N , n ∈ Z (1)

The result of the Equation 1 is a set of sinusoidal functions,
each corresponding to a particular frequency component (i.e., the
spectrum1).

1The spectrum of the frequency components is the frequency domain representation of a
signal.



A Fourier Spectral Pattern Analysis to Design Credit Scoring Models IML’17, October 17-18, 2017, Liverpool city, United Kingdom

Frequency

Time

Magnitude

f1

f2

f...

fX

Figure 1: Time and Frequency Domains

If it is necessary, we can use the inverse Fourier transform shown
in Equation 2 to return to the original time domain.

fk =
1
N

N−1

∑
n=0

Fn · e2πikn/N , n ∈ Z (2)

The Fast Fourier Transform (FFT ) algorithm, used in the context
of this paper to perform the Fourier transformations, rapidly com-
putes the DFT , or its Inverse Fast Fourier Transform (IDFT ), by
factorizing the input matrix into a product of sparse (mostly zero)
factors. It is largely used because it reduces the computational com-
plexity of the process from O(n2) to O(n logn), where n denotes the
data size.

3 PRELIMINARIES
Formal notation, premises, and problem statement related to this
paper are stated in the following:

3.1 Notation
Given a set of classified instances I = {i1, i2, . . . , iN}, and a set of
features V = {v1,v2, . . . ,vM} that compose each i ∈ I, we denote as
I+ ⊆ I the subset of non-default instances, and as I− ⊆ I the subset
of default ones.

We also denote as Î = {î1, î2, . . . , îU} a set of unclassified instances
and as O = {o1,o2, . . . ,oU} these instances after the classification
process, thus |Î| = |O|.

It should be observed that an instance can belong only to one
class c ∈C, where C = {accepted,re jected}.

Finally, we denote as F = { f1, f2, . . . , fX} the frequency compo-
nents of each instance (spectrum), obtained at the end of the DFT
process.

3.2 Premises
Considering that the periodic waves are characterized by a frequency
f and a wavelength λ (i.e., the distance in the medium between
the beginning and end of a cycle λ =

w
f0

, where w stands for the

wave velocity), which are defined by the repeating pattern, the non-
periodic waves taken into account in the Discrete Fourier Transform
process do not have a frequency or wavelength. Their fundamental
period T is the period where the wave values were taken and sr
denotes their number over this time (i.e., the acquisition frequency).

Assuming that the time interval between the acquisitions is equal,
on the basis of the previous definitions applied in the context of this
paper, the considered non-periodic wave is given by the sequence of

values v1,v2, . . . ,vM with v∈V , which compose each instance i∈ I+
(i.e., the past non-default instances) and î ∈ Î (i.e., the unevaluated
instances), and that representing the time series taken into account.

Their fundamental period T starts with v1 and it ends with vM ,
thus we have that sr = |V |; the sample interval si is instead given by
the fundamental period T divided by the number of acquisition, i.e.,

si =
T
|V |

.

Through the FFT algorithm we compute the Discrete Fourier
Transform of each time series i ∈ I+ and î ∈ Î, by converting their
representation from the time domain to the frequency one. The ob-
tained frequency-domain representation provides information about
the signal’s magnitude and phase at each frequency. For this reason,
the output (denoted as x) of the FFT computation is a series of
complex numbers composed by a real part xr and an imaginary part
xi, thus x = (xr + ixi).

We can obtain the x magnitude by using |x| =
√

(x2
r + x2

i ) and

the x phase by using ϕ(x) = arctan
( xi

xr

)
, although in the context

of this paper we will take into account only the magnitude at each
frequency.

3.3 Problem Statement
On the basis of the comparison of the spectral analysis λ performed
by the FFT algorithm on the time series in i ∈ I+ and î ∈ Î, our FSP
approach classifies each instance î ∈ Î as accepted or rejected.

Given a function eval (î,λ) created to evaluate the correctness of
the î classification, which returns a boolean value σ (0=misclassifi-
cation, 1=correct classification), we formalize our objective as the
maximization of the results sum, as shown in Equation 3.

max
0≤σ≤|Î|

σ =

|Î|

∑
u=1

eval (îu,λ) (3)

4 PROPOSED APPROACH
The implementation of our approach is carried out through the fol-
lowing steps:

(1) Time Series Definition (T SD): definition of the time se-
ries to use in the FFT algorithm, in terms of sequence of
instance feature values;

(2) Time Series Analysis (T SA): comparison of the Fourier
spectral patterns of two instances, performed by processing
their time series, defined in the previous step, through the
FFT algorithm;

(3) Time Series Dynamic Feature Selection (DFS): determi-
nation of the weight of each frequency component in the
instance spectrum, on the basis of the Shannon entropy
metric;

(4) Time Series Classification (T SC): formalization of the
FSP algorithm able to classify a new instance as accepted
or rejected, on the basis of the T SA comparison, the DFS
process, and the tolerance range ρ.

In the following, we provide a detailed description of each of
these steps, since we have introduced the high-level architecture of
the proposed FSP approach.
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Figure 2: FSP Architecture

The high-level description shown in Figure 2 wants shortly intro-
duces the processes involved in our approach, which are however
explained in detail in the following.

According to the notation given in Section 3.1, I+ and Î denote,
respectively, the set of non-default instances and the set of instances
to evaluate, while the set O denotes the instances in Î after their
classification. We indicates with T(I+ ) and T(Î) the time series related,
respectively, with the instances in I+ and Î, and with F(I+ ) and F(Î)
the set of frequency components obtained by processing these time
series through the FFT algorithm.

At the beginning, the time series related to the sets of the unevalua-
ted instances and the previous non-default instances are extracted.
They are used as input in the Fourier Transform process, obtaining as
result the spectral pattern of each instance. The classification of the
instances to evaluate is based on a comparison process performed
between their spectral patterns and those of the previous non-default
ones, taking into account the importance of each frequency compo-
nent (in terms of entropy) and a tolerance range ρ experimentally
defined.

4.1 Time Series Definition
In the first step of our approach we define the time series to use in
the Discrete Fourier Transform process.

Formally, a time series represents a series of data points stored
by following the time order and usually it is a sequence captured at
successive equally spaced points in time, thus it can be considered a
sequence of discrete-time data.

In the context of the proposed approach, the time series taken into
account are defined by using the set of features V that compose each
instance in the I+ and Î sets, as shown in Equation 4, by following
the criterion reported in Equation 5.

I+ =

∣∣∣∣∣∣∣∣∣
v1,1 v1,2 . . . v1,M
v2,1 v2,2 . . . v2,M
...

...
. . .

...
vN,1 vN,2 . . . vN,M

∣∣∣∣∣∣∣∣∣ Î =

∣∣∣∣∣∣∣∣∣
v1,1 v1,2 . . . v1,M
v2,1 v2,2 . . . v2,M
...

...
. . .

...
vU,1 vU,2 . . . vU,M

∣∣∣∣∣∣∣∣∣ (4)

(v1,1,v1,2, . . . ,v1,M ), (v2,1,v2,2, . . . ,v2,M ), · · · , (vN,1,vN,2, . . . ,vN,M )
(v1,1,v1,2, . . . ,v1,M ), (v2,1,v2,2, . . . ,v2,M ), · · · , (vU,1,vU,2, . . . ,vU,M )

(5)

The time series related to an item î ∈ Î will be compared to the
time series related to all the items i ∈ I+, by following the criteria
explained in the next steps.

4.2 Time Series Analysis
Before we describe the process of analysis based on the Fourier
transformation, it is useful to observe the spectral pattern of an
instance randomly taken from a dataset, with |V | = 20 (Figure 3),
beside its canonical representation in the time domain.

The frequency domain representation allows us to perform a data
(represented by the sequence of values assumed by the instance
features, as described in Section 4.1) analysis in terms of peaks
(magnitudes) of the spectral frequencies that compose it. This allows
us to detect some patterns in the features, which are not discoverable
in the time domain.

Comparing the two different domains, we can observe some
interesting properties for the context taken into account in this paper.
The most significant are the following:

• The phase invariance property shown in Figure 4 proves
that also in case of translation2 between instances, a spe-
cific pattern still exists in the frequency spectrum. More
formally, it is one of the phase properties of the Fourier
transform [41], i.e., a shift of a time series in the time do-
main leaves the magnitude unchanged in the frequency do-
main. This property allows us to detect a particular pattern
in the user behavior, regardless to the involved instances
that compose it. A concrete example is represented by the
values in the features from 6 to 11, from 12 to 17, and
from 18 to 23, of the DC dataset (described in Table 2 of
Section 5.2). They report a sequence of values that belong
to three different types of information, related to the loan
applicant (i.e., past repayments, bill statement, and amount
paid), and by exploiting the spectrum pattern analysis we
can detect a specific pattern (behavior), also when it shifts
along the features that compose one of these subsets of
values;

• Another interesting aspect of the frequency domain is given
by the amplitude correlation property shown in Figure 5.
It proves the existence of a direct correlation between the
values assumed by the features in the temporal domain and
the magnitudes of the spectral components in the frequency
domain. More formally, it is the homogeneity property
of the Fourier transform [41], i.e., when the amplitude is
altered in one domain, it is altered by the same entity in the
other domain3. This property assures us of the capability of

2In terms of signal it represents a change of phase, considering that a translation in time
domain corresponds to a change in phase in the frequency domain.
3Scaling in one domain corresponds to scaling in the other domain
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Figure 4: Phase Invariance Property
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Figure 5: Amplitude Correlation Property

the frequency representation to differentiate the instances
on the basis of the size of the values in their features.

Practically, the process of analysis is performed by moving the
time series of the instances to compare from their time domain to
the frequency one, by recurring to the FFT approach introduced in
Section 2.5.

In this context, although there are many algorithms able to calcu-
late the FFT , the most used are those based on the Cooley-Tukey
recursive algorithm. It grants us a decimation in time on the basis
of the following considerations: when the number N of input data
is even, it is possible to express it as N = 2 ·M, allowing us to split
the N element summation of the DFT formula into two M element

f 1
x f 2

x · · · || · · ·

| f 2
x |

| f 1
x |

0

max

↑
∆
↓

Frequency

M
ag

ni
tu

de

Figure 6: Delta Di f f erence

ones, one over n = 2 ·m, another over n = 2 · (m+1), as shown in the
Equation 6.

Xk =
M−1

∑
m=0

x2me−2πi mk
M + e−2πi k

N

M−1

∑
m=0

x2m +1e−2πi mk
M (6)

We implement the FFT approach by using the JTransforms Java
library, according to what reported in Section 5.1.

The process of comparison between an instance î ∈ Î to evaluate
and a past non-default instance i ∈ I+ is performed by measuring the
difference ∆ between the magnitude | f | of each component f ∈ F
in the frequency spectrum of the involved instances.

It is shown in the Equation 7, where f 1
x and f 2

x denote, respec-
tively, the same frequency component of an item i ∈ I+ and an item
î ∈ Î. Such process of comparison between the same frequency
component of two instances is also graphically shown in Figure 6.

∆ =
(
| f 1

x |− | f 2
x |
)
, with | f 1

x | ≥ | f 2
x | (7)

It should be noted that, as described in Section 4.4, for each
instance î ∈ Î to evaluate, the aforementioned process is repeated by
comparing it to each instance i ∈ I+. This allows us to evaluate the
variation ∆ in the context of all the non-default past cases.

4.3 Time Series Dynamic Feature Selection
In the context of machine learning and statistics, the feature selection
process is aimed to detect a subset of relevant features to use during
the model definition. It represents an important preprocessing step,
since it reduces the complexity of the final model, decreasing the
training times, and increasing the generalization of the model. It
also reduces the problem related with the overfitting, a problem that
occurs when a statistical model describes random error or noise
instead of the underlying relationship, and this frequently happens
during the definition of excessively complex models, since many
parameters, with respect to the number of training data, are involved.

In the context of our approach, we perform the feature selection
task in a dynamic way, by measuring the Shannon entropy (i.e., a
metric described in Section 5.3.1) in each feature of the training
datasets (Figure 7).

Since the entropy gives us a measure of the uncertainty of a
random variable, the larger it is, the less a-priori information one
has on the value of it, then the entropy increases as the data becomes
equally probable and decreases when their chances are unbalanced.

The adoption of different weights during the evaluation process,
performed by the Dynamic Feature Selection (DFS) approach, is
aimed to differentiate the instance features on the basis of their
predictive power.
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Figure 7: Instance Features Entropy

For the needs of the Algorithm 1, we formalize the DFS in terms
of inverse Shannon entropy (in order to have a high value when the
feature is important, and a low value otherwise). Such formalization
is shown in Equation 8, where P( f ) indicates the probability that the
frequency component f is present in the set F .

The obtained result represents the weight of the f frequency
component (in terms of entropy) to use in the evaluation process
described in the Section 4.4.

DFS( f ) = 1−

(
− ∑

f∈F
P( f )log2[P( f )]

)
(8)

4.4 Time Series Classification
This section formalizes the FSP algorithm used to perform the
classification of new instances, together with the analysis of its
asymptotic time complexity.

4.4.1 Algorithm. The proposed FSP approach is based on the
Algorithm 1. It takes as input the set I+ of non-default instances
occurred in the past, the set Î of unevaluated instances, and the
tolerance range ρ (determined as described in Section 5.4.2). It
returns as output a set O that contains all the instances in Î, classified
as accepted or rejected.

From step 2 to step 23 we process all unevaluated instances î ∈ Î,
by starting with the extraction of the time series of each instance
(step 3), which is processed at step 4 in order to obtain the frequency
spectrum. From the step 5 to step 15 we instead process each non-
default instance i∈ I+, by performing the extraction of the time series
of each instance (step 6) and by obtaining its frequency spectrum
(step 7).

The steps from 8 to 14 verify if the difference between the mag-
nitude of each frequency components f ∈ F of the non-default
instances and the correspondent component of the current instance,
is within the ρ range.

On the basis of the result of this operation, in the steps from
9 to 13, the weight (in terms of entropy) of the current frequency

Algorithm 1 FSP Instances classi f ication

Input: I+=Non-default instances, Î=Unevaluated instances, ρ=Tolerance range
Output: O=Set of classified instances
1: procedure INSTANCESCLASSIFICATION(I+ ,Î,ρ)
2: for each î in Î do
3: ts1 = getTimeseries(î)
4: F1 = getFFT (ts1)
5: for each i in I+ do
6: ts2 = getTimeseries(i)
7: F2 = getFFT (ts2)
8: for each f in F do
9: if (|F2 ( f )|− |F1 ( f )| ∈ ρ) then

10: reliable += DFS( f )
11: else
12: unreliable += DFS( f )
13: end if
14: end for
15: end for
16: if reliable > unreliable then
17: O← (î,accepted)
18: else
19: O← (î,re jected)
20: end if
21: reliable = 0
22: unreliable = 0
23: end for
24: return O
25: end procedure

component is used in order to increase the reliable value (when the
difference is within the ρ range) or the unreliable one (otherwise)
(steps 10 and 12).

On the basis of these two values the instance under evaluation is
classified as accepted or rejected in the steps from 16 to 20, and the
result of the classification process is returned by the algorithm at the
step 24, when all instances î ∈ Î have been processed.

4.4.2 Asymptotic Time Complexity. Although the evaluation of
the time needed to perform the classification of a single instance is
quite unnecessary, the possible implementation of the proposed FSP
approach in a real-time scoring system [37], where the response-
time represents a crucial factor, suggests us to analyze the theoretical
complexity of the classification Algorithm 1.

Denoted as N the dimension of the training set I+ (i.e., N = |I+|),
we define the asymptotic time complexity of the evaluation of a
single instance (according to the Big O notation) by observing what
follows:

(i) the Algorithm 1 presents three nested loops given by the outer
loop that starts at step 2, which executes N times the other two
inner loops (the first that starts at step 5 and the second that
starts at step 8), plus other operations (getTimeseries, getFFT,
comparisons, and assignations), respectively with complexity
of O(n), O(n log n), O(1), and O(1);

(ii) the first inner loop executes one time the same aforementioned
operations, plus its inner loop that executes operations with
complexity O(1) (comparisons and assignations) for a number
of times lesser than N (i.e., for |F | times);

On the basis of the previous considerations, we can conclude that
the asymptotic time complexity of the algorithm is O(N2).

It should also be noted that the computational time can be ade-
quately reduced by distributing the process over different machines,
by employing large scale distributed computing models like MapRe-
duce [15].
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5 EXPERIMENTS
This section reports information about the experimental environ-
ment, the used datasets and metrics, the adopted strategy, the chosen
competitor, as well as the results of the performed experiments.

5.1 Environment
The proposed FSP approach was developed in Java, where we use
the JTransforms4 library to operate the Fourier transformations.

The state-of-the-art approach used to evaluate its performance
was made in R5, using the randomForest and ROCR packages, as
detailed in Section 5.5.

The experiments have been conducted by using two real-world
datasets, both characterized by a strong unbalanced distribution of
data.

It should be further added that we verified the existence of a
statistical difference between the results, by using the independent-
samples two-tailed Student's t-tests (p < 0.05).

5.2 Datasets
The two real-world datasets used in the experiments (i.e., German
Credit and Default of Credit Card Clients datasets, both available
at the UCI Repository of Machine Learning Databases6) represent
two benchmarks in this research field. In the following we provide a
brief description of their characteristics:

5.2.1 German Credit (GC). It contains 1,000 instances: 700
of them are non-default instances (70.00%) and 300 are default
instances (30.00%). Each instance is composed by 20 features
(whose type is described in Table 1) and a binary class variable
(accepted or rejected).

Table 1: Dataset GC Fields

Feature Description Feature Description
01 Status of checking account 11 Present residence since
02 Duration 12 Property
03 Credit history 13 Age
04 Purpose 14 Other installment plans
05 Credit amount 15 Housing
06 Savings account/bonds 16 Existing credits
07 Present employment since 17 Job
08 Installment rate 18 Maintained people
09 Personal status and sex 19 Telephone
10 Other debtors/guarantors 20 Foreign worker

5.2.2 Default of Credit Card Clients (DC). It contains 30,000
instances: 23,364 of them are non-default instances (77.88%) and
6,636 are default instances (22.12%). Each instance is composed by
23 features (whose type is described in Table 2) and a binary class
variable (accepted or rejected).

5.3 Metrics
This section introduces the metrics used in the context of this paper.

4https://sites.google.com/site/piotrwendykier/software/jtransforms
5https://www.r-project.org/
6ftp://ftp.ics.uci.edu/pub/machine-learning-databases/statlog/

Table 2: Dataset DC Fields

Feature Description Feature Description
01 Credit amount 13 Bill statement in Aug-2005
02 Gender 14 Bill statement in Jul-2005
03 Education 15 Bill statement in Jun-2005
04 Marital status 16 Bill statement in May-2005
05 Age 17 Bill statement in Apr-2005
06 Past repayments in Sep-2005 18 Amount paid in Sep-2005
07 Past repayments in Aug-2005 19 Amount paid in Aug-2005
08 Past repayments in Jul-2005 20 Amount paid in Jul-2005
09 Past repayments in Jun-2005 21 Amount paid in Jun-2005
10 Past repayments in May-2005 22 Amount paid in May-2005
11 Past repayments in Apr-2005 23 Amount paid in Apr-2005
12 Bill statement in Sep-2005

5.3.1 Shannon Entropy. The Shannon entropy, formalized by
Claude E. Shannon in [39], is one of the most important metrics
used in information theory. It reports the uncertainty associated with
a random variable, allowing us to evaluate the average minimum
number of bits needed to encode a string of symbols, based on their
frequency.

More formally, given a set of values v ∈V , the entropy H (V ) is
defined as shown in the Equation 9, where P(v) is the probability
that the element v is present in the set V .

In the context of the classification methods, the entropy-based
metrics are frequently used during the feature selection [13, 29, 30]
process, which is aimed to detect a subset of relevant features (vari-
ables, predictors) to use during the definition of the classification
model. We use it for this task, dynamically, as described in Sec-
tion 4.3.

H (V ) =−∑
v∈V

P(v)log2[P(v)] (9)

5.3.2 Accuracy. The Accuracy metric reports the number of
instances correctly classified, compared to the total number of them.

More formally, given a set of instances X to be classified, it is
calculated as shown in Equation 10, where |X | stands for the total
number of instances, and |X (+) | for the number of those correctly
classified.

Accuracy(X ) =
|X (+) |
|X |

(10)

5.3.3 Sensitivity. Differently from the accuracy metric previ-
ously described, which takes into account all kind of classifications,
through the Sensitivity we only obtain information about the number
of instances correctly classified as reliable. It gives us an important
information, since it evaluates the predictive power of our FSP ap-
proach in terms of capability to detect the reliable loan applications,
offering a crucial decision support in real-world contexts.

More formally, given a set of instances X to be classified, the
Sensitivity is calculated as shown in Equation 11, where |X (T P) |
stands for the number of instances correctly classified as reliable
and |X (FN) | for the number of reliable instances wrongly classified
as unreliable.

Sensitivity(X ) =
|X (T P) |

|X (T P) |+ |X (FN) |
(11)

5.3.4 F-measure. The F-measure is the weighted average of
the precision and recall metrics. It is a largely used metric in the
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statistical analysis of binary classification, returning a value in a
range [0,1], where 0 is the worst value and 1 the best one.

More formally, given two sets X and Y , where X denotes the set
of performed classifications of instances, and Y the set that contains
the actual classifications of them, this metric is defined as shown in
Equation 12.

F-measure(X ,Y ) = 2 · (precision(X ,Y ) · recall (X ,Y ))

(precision(X ,Y )+ recall (X ,Y ))
with

precision(X ,Y ) =
|Y ∩X |
|X |

, recall (X ,Y ) =
|Y ∩X |
|Y |

(12)

5.4 Strategy
This section reports information about the strategy adopted during
the execution of the experiments.

5.4.1 Cross-validation. In order to reduce the impact of data
dependency, improving the reliability of the obtained results, all
the experiments have been performed by using the k-fold cross-
validation criterion, with k=10.

Each dataset is randomly shuffled, then it is divided in k subsets,
and each k subset is used as test set, while the other k-1 subsets are
used as training set. The final result is given by the average of all
results.

5.4.2 Tolerance Range. Considering that we have introduced
a tolerance range ρ in the evaluation process performed by the
Algorithm 1 (Section 4.4.1), we need to define its upper and lower
bounds in the context of each dataset.

This range is used in the spectrum comparison process in order to
determine when a ∆ value, i.e., the difference between the magnitude
of the same frequency component of two instances (one of them that
belongs to the non-default cases and the other one that represents
the instance to evaluate), as shown in Figure 6, must be considered
acceptable or not (the classification of an instance as accepted or
rejected depends on the results of these evaluations).

For each frequency component f ∈ F , measured in the set of
past non-default instances I+, we calculate the difference in terms of
magnitude between each possible pair ( f , f̂ ), with f , f̂ ∈ F .

Denoting as | f − f̂ |I+ the aforementioned process of calculation
of the differences between the magnitudes assumed by the same
frequency component f in the dataset I+, we define the tolerance
range ρ of each f ∈ F as shown in the Equation 13.

ρ = [ρmin,ρmax]
with
ρmin = min(| f − f̂ |I+ ), ρmax = max(| f − f̂ |I+ )

(13)

Differently from our competitor approach (i.e., Random Forests),
which allows us to determine the parameters value that leads toward
its best performance, our approach adopts a dynamic method in order
to determine the optimal range (minimum and maximum value) for
each frequency component, instead to use a single range for all of
them. For this reason, we can not determine these ranges of values a
priori, since they are strictly related to the dataset taken into account,
according to the Equation 13.
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Figure 8: Random Forests Tuning

5.5 Competitor
Here, we describe the state-of-the-art approach chosen as competitor
in order to evaluate the performance of our approach, beside the
parameter tuning process aimed to optimize its performance.

5.5.1 Description. As mentioned previously, the implementation
of the state-of-the-art approach to which we compare our approach
was made in R, by using the randomForest and ROCR packages.
For reproducibility reasons, we fix the seed of the random number
generator by calling the R function set.seed().

5.5.2 Parameters Tuning. In order to get the best performance
from the RF approach, we need to perform a tuning process aimed
to detect the optimal value of its configuration parameters.

The caret package in R provides an excellent functionality to
perform this type of operation. Considering that caret supports only
those algorithm parameters that have a crucial role in the tuning
process, such as the mtry in the RF (number of variables randomly
sampled as candidates at each split), we use caret in order to tune
this parameter. The operation was performed by following the grid
search approach, where each axis of the grid is an algorithm param-
eter and the points in the grid are specific parameters combinations.

The tests were stopped as soon as the measured accuracy did
not improve further. Although the differences are minimal beyond
certain values, as can be seen in the Figure 8, the experiments
indicate as optimal value for mtry 27 for the GC dataset and 8 for
the DC dataset, since these values lead toward the maximum value
of Accuracy (i.e., respectively, 75.36% and 81.26%).

5.6 Results
This section reports, presents and discusses the results of the per-
formed experiments.

5.6.1 Overview. A first analysis of the experimental results (re-
ported in Figure 9, Figure 10, and Figure 11) shows that:

(i) the performance of our FSP approach is very similar to the RF
one, in terms of Accuracy, with both the GC and DC datasets;

(ii) the FSP approach gets better performance than RF one, in
terms of F-measure, by using the DC dataset, and very close
to it by using the GC dataset;

(iii) the FSP approach outperforms the RF one, in terms of Sensi-
tivity, with both the GC and DC datasets.

The above aspects will be more deeply discussed in the next
Section 5.6.2 and Section 5.6.3.
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5.6.2 Discussion. The first observation that rises by examining
in more detail the experimental results is related to the fact that our
FSP approach gets performance very close (or better) to those of
RF one, although it does not exploit the past default cases during
the training process.

Another observation is instead related to the F-measure results,
which show that the effectiveness of the FSP approach increases
with the number of past non-default instances involved in the training
process (DC dataset), differently from the RF approach, where this
does not happen, although its training process involves both the
default and the non-default past cases.

It should be noted that, in the light of the obtained results, the
proactivity that characterizes our approach can reduce/overcome the
cold-start problem described in Section 2.3, allowing a real-world
system to operate even in the absence of previous cases of default
instances, with all the advantages that derive from it.

The last but not less important observation is related to the re-
sults in terms of sensitivity, which show significant improvements,
compared to the state-of-the-art RF approach taken into account.
It means that the number of correct true positive classifications of
instances is higher than that obtained by the RF approach, and this
provides a clear benefit in a real-world context.

5.6.3 Benefits and Limitation. The experimental results presented
and discussed before show that our approach performs similarly to

one of the best performing state-of-the-art approaches such as Ran-
dom Forests, although it operates in a proactive manner.

In addition, it is able to outperform Random Forests when the
training process involves a large number of previous non-default
cases, proving to be more effective than its competitor in the identi-
fication of the reliable instances.

On the basis of these results, a benefit related to the adoption of
our credit scoring approach is its ability to face the data unbalance
problem that reduces the effectiveness of the canonical approaches,
since it exploits only a class of data in the model definition process
(i.e., the previous non-default instances). Such proactive strategy
also reduces/overcomes the well-known cold-start problem.

Another benefit is instead related to the fact that the model used
during the evaluation process, based on the spectral pattern of the in-
stances, is more stable than the canonical one, because the frequency
components are less influenced by the data heterogeneity.

For the aforementioned reasons, our approach can be used in
order to create hybrid approaches able to operate in all contexts, by
combining its capability to operate proactively with the advantages
offered by the non-proactive state-of-the-art approaches.

We can also identify as main limitation of our approach its few
benefits in those cases where it exists a balanced data distribution
with enough default and non-default cases to use during the model
training. However, it should be underlined that this represents an
uncommon real-world scenario.

6 CONCLUSIONS AND FUTURE WORK
The credit scoring techniques cover a crucial role in many financial
contexts (i.e., bank loans, mortgage lending, insurance policies, etc.).
They are adopted by the financial operators in order to assess the
potential risks related to the customer applications, allowing them to
reduce the losses due to default.

In this paper we proposed a novel approach of credit scoring able
to classify the new instances as accepted or rejected by evaluating
them in terms of frequency spectral pattern. This operation is per-
formed by moving the evaluation process from the canonical domain
to a frequency one, where the evaluation model is defined by using
only the past non-default loan applications.

Such strategy presents two main advantages, the first of them is
related to its ability to face the data unbalance issue, facing at the
same time the cold-start problem, and the second one is related to
its capability to define a model only by exploiting the non-default
previous instances, allowing a system to operate proactively.

Future work would explore the effect, in terms of performance,
of the inclusion of the default past instances in the model definition
process, evaluating the advantages and disadvantages of the adoption
of such non-proactive strategy.

Another interesting study would be to experiment the exploitation
of other characteristics of the instances represented in the frequency
domain, with the objective to improve the effectiveness of the classi-
fication algorithm.

A secondary but also interesting future work would be the evalua-
tion of our approach in the context of heterogeneous environments,
where numerous types of financial data are involved (e.g., the elec-
tronic commerce environment).
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