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A New Perspective on Recommender Systems:
a Class Path Information Model

Abstract—Recommender systems perform suggestions for
items that might interest the users. The recommendation process
is usually performed at the level of a single item, i.e., for each item
not evaluated by a user, classic approaches look for the rating
given by similar users for that item, or for an item with similar
content. This leads to the so-called overspecialization/serendipity
problem, in which the recommended items are trivial and users
do not come across surprising items. In this paper we first show
that the preferences of the users are actually distributed over a
small set of classes of items, leading the recommended items to
be too similar with the ones already evaluated. We also present a
novel representation model, named Class Path Information (CPI),
able to express the current and future preferences of the users
in terms of a ranked set of classes of items. Our approach to
user preferences modeling is based on a semantic analysis of the
items evaluated by the users, in order to extend the ground truth
and predict where the future preferences of the users will go.
Experimental results show that our approach, by including in
the CPI model the same classes predicted by a state-of-the-art
recommender system, is able to accurately model the preferences
of the users in terms of classes and not in terms of single items,
allowing recommender systems to suggest non trivial items.

Keywords—Recommender Systems; Semantic Analysis; User
Modeling; Serendipity; Novelty

I. INTRODUCTION

A recommender system suggests items that might be
interesting for a user. In order to identify which items are
useful for her/him, a recommender system has to predict that
an item is worth recommending [1]. Rating prediction has
been highlighted in the literature as the core recommendation
task [1], [2], [3], its relevance has been further evidenced by
the Netflix prize [4], and recent studies showed its effectiveness
also in improving classification tasks [5], [6]. However, there
are widely-known problems in the recommendation process.

Overspecialization/Serendipity. Independently from the
approach used to build the predictions, recommender systems
usually suggest items that have a strong match with the user
profile, consequently the user always receives recommenda-
tions for items very similar to those that she/he already consid-
ered and never receives suggestions for unexpected, surprising,
and novel items. This recommender systems limit, known in
the literature as “serendipity problem” or “overspecialization
problem”, worsens the user experience and does not give the
users the opportunity to explore new items and to improve
their knowledge [7]. It is known that the serendipity problem
affects both the most used recommendation strategies, i.e., the
content-based [8] and the collaborative filtering approaches [9].
In fact, on the one hand content-based recommender systems
build their predictions by calculating the similarity between the
items’ content, while on the other hand collaborative filtering
looks for items evaluated by the users similar to the target

user who has to receive the recommendations. In the literature,
several researches also highlight that the serendipity of a
resource can be computed by measuring its distance from the
items previously considered by the target user [8], [7], [10],
[11].

To complicate the previous scenario, there are domains
like movies in which the preferences tend to be stable over
time [12] (i.e., users tend to watch movies of the same genres
or by the same director/actor). This is useful to maintain high-
quality knowledge sources, but does not allow a system to
diversify the recommended items. Preference stability leads
also to the fact that when users get in touch with diverse items,
diversity is not valued [13]. On the one side, users tend to
access to agreeable information (a phenomenon known as filter
bubble [14]) and this lead to the overspecialization problem,
while on the other side they do not want to face diversity.

Our contributions. In this paper we want to address the
following research question: can we exploit user preferences
and represent them in a broader way, in order to suggest
non trivial items, but not too diverse from those the user
already evaluated? In order to face this problem, we present a
representation model, named Class Path Information (CPI),
represented as a ranking of the classes of items each user
prefers. The CPI model is built with a novel approach that
performs a semantic analysis of the items already evaluated
by a user, in order to extend the ground truth and infer if
the terms used to describe the items evaluated by a user that
belong to a class (e.g., the movies of a specific genre) also
characterize other classes of items, which the user may have or
may have not evaluated. By modeling user preferences in terms
of classes and by predicting where the future preferences of the
users will go, a recommender system can generate serendipity
without recommending the users something too far from their
preferences. Moreover, by understanding the context in which
recommendations should be produced in terms of classes,
we avoid calculating the semantic distance between single
items, which is a heavy process in terms of computational
costs. Another advantage offered by this approach is that the
generated models can be used to produce recommendations
with any approach. Indeed, the CPI provides information of
the classes of items the user prefers, which can be exploited
by any recommendation technique.

The main contributions coming from our proposal are the
following:

• we show that preference stability exists in terms
of classes of items. An analysis performed on two
real-world datasets shows that user preferences are
distributed over a small set of classes;

• we characterize each class of items using a set of
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Semantic Binary Sieves (SBS), a novel type of filter
able to weigh the relevance of each class for each user;

• we develop an algorithm able to evaluate a relevance
score of each class of items for each user by using the
SBS filters;

• we introduce the novel concept of Class Path Infor-
mation (CPI) model, which builds a relevance score
of the classes of items each user prefers, and define
an algorithm to create it;

• we evaluate our approach on a real-world dataset and
show that the classes available in the model have a
large overlap with those of the items predicted by a
state-of-the-art recommender system.

Roadmap. The rest of the paper is organized as follows:
Section II provides a background on the concepts handled
by our proposal and the formal definition of our problem;
Section III presents an analysis of preference stability on
two real-world datasets; Section IV describes the details of
the proposed approach to model user preferences in terms of
classes; Section V describes the experimental framework used
to evaluate our proposal; Section VI discusses related work;
Section VII contains conclusions and future work.

II. PRELIMINARIES

Background. For many years the item descriptions were
analyzed with a word vector space model, where all the terms
of each item description are processed by TF-IDF [15] and
stored in a weighted vector of terms. Due to the fact that
this approach based on a simple bag of words is not able
to perform a semantic disambiguation of the words in an
item description, we decided to exploit the functionalities
offered by the WordNet environment, a large lexical database
of English, where nouns, verbs, adjectives and adverbs are
grouped into sets of cognitive synonyms (synsets), each ex-
pressing a distinct concept. Synsets are interlinked by means
of conceptual-semantic and lexical relations. Wordnet currently
contains about 155,287 words, organized into 117,659 synsets
for a total of 206,941 word-sense pairs [16]. In a short, the
main relation among words in WordNet is the synonymy
and the synsets are unordered sets of grouped words that
denote the same concept and are interchangeable in many
contexts. Each synset is linked to other synsets through a
small number of conceptual relations. Word forms with several
distinct meanings are represented in as many distinct synsets,
in this way each form-meaning pair in WordNet will be unique
(e.g. the fly insect and the fly verb belong to two distinct
synsets). Most of the WordNet relations connect words that
belong to the same part-of-speech (POS). There are four POS:
nouns, verbs, adjectives and adverbs. Both nouns and verbs
are organized into precise hierarchies, defined by hypernym
or is-a relationships. For example, the first sense of the word
radio would have the following hypernym hierarchy, where
the words at the same level are synonyms of each other:
some sense of radio is synonymous with some other senses
of radiocommunication or wireless, and so on. Each synset
has a unique index and shares its properties, such as a gloss
or dictionary definition. We use the synsets to perform both the
definition of binary filters and the evaluation of the relevance
scores of the classes in a user profile.

Notation. We are given a set of users U = {u1, . . . , uN},
a set of items I = {i1, . . . , iM}, and a set V of values
used to express the user preferences (e.g., V = [1, 5] or
V = {like, dislike}). The set of all possible preferences
expressed by the users is a ternary relation P ⊆ U×I×V . We
denote as P+ ⊆ P the subset of preferences with a positive
value (i.e., P+ = {(u, i, v) ∈ P |v ≥ v ∨ v = like}), where
v indicates the mean value (in the previous example, v = 3).
Moreover, we denote as I+ = {i ∈ I|∃(u, i, v) ∈ P+} the
set of items for which there is a positive preferences, and as
as Iu = {i ∈ I|∃(u, i, v) ∈ P+ ∧ u ∈ U} the set of items
a user u likes. Let C = {c1, . . . , cK} be a set of classes
used to classify the items; we denote as Ci ⊆ C the set
of classes used to classify an item i (e.g., Ci might be the
set of genres that a movie i was classified with), and with
Cu = {c ∈ C|∃(u, i, v) ∈ P+ ∧ i ∈ Ci} the classes associated
to the items that a user likes.

Let BoW = {t1, . . . , tW } be the bag of words used to
describe the items in I; we denote as di be the binary vector
used to describe each item i ∈ I (each vector is such that |di| =
|BoW |). We define as S = {s1, . . . , sW } the set of synsets
associated to BoW (that is, for each term used to describe
an item, we consider its associated synset), and as sdi the
semantic description of i. The set of semantic descriptions is
denoted as D = {sd1, . . . , sdM} (note that we have a semantic
description for each item, so |D| = |I|). The approach used to
extract sdi from di is described in detail in Section IV.

Problem Definition. Given a set of positive preferences
P+ that characterizes the items each user likes, a set of classes
C used to classify the items, and a set of semantic descriptions
D, our goal is to assign a relevance score ru(c) for each user u
and each class c, based on the semantic descriptions D. Each
relevance score will be combined into a model CPIu, defined
as follows:

CPIu = (ru(c1), . . . , ru(cK)) (1)

Each CPIu must respect the following properties:

• ru(c1) ≥ ... ≥ ru(cK)

• CPIu ⊇ Cu

So, each CPI model contains a list of classes ranked by
relevance score and the classes available in the model are a
superset of the classes for which a user expressed a preference
(i.e., we are going to predict the future preferences of the users,
based on the semantic analysis of the items she/he likes).

III. CHARACTERIZING PREFERENCE STABILITY

In order to understand if preference stability can be char-
acterized in terms of the classes used to classify the items,
in this section we are going to present the distribution of the
classes Cu related to the items a user likes. For each user
u ∈ U and each class c ∈ Cu, we consider how many positive
preferences the user expressed for that class. We call this value
the popularity of the class for that user, and define it as the
percentage of items that the user likes and belong to that class:

popularity(u, c) =
|{(u, i, v) ∈ P+|i ∈ c}|
|{(u, i, v) ∈ P+}|

(2)
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Then, we ordered the popularity values of each user in
decreasing order and average all the popularity values at the
position j in the list of each user (i.e., if j = 1, we calculate
the average amount of preferences each user expressed for the
items in the most popular class).

The study has been performed on the following real-world
datasets:

Yahoo! Webscope R41. The dataset contains a large
amount of data related to users preferences expressed on the
Yahoo! Movies community that are rated on the base of two
different scales, from 1 to 13 and from 1 to 5 (we have chosen
to use the latter). The training data is composed by 7,642 users
(|U |), 11,915 movies/items (|I|), and 211,231 ratings (|R|), and
all users involved have rated at least 10 items and all items
are rated by at least one user. The test data is composed by
2,309 users, 2,380 items, and 10,136 ratings. There are no test
users/items that do not also appear in the training data. Each
user in the training and test data is represented by an unique
ID. As shown in Table I, the items are classified by Yahoo in
20 different classes (movie genres), and it is should be noted
that each item may be classified in multiple classes.

01 Comedy 11 Reality
02 Drama 12 Kids/Family
03 Action/Adventure 13 Crime/Gangster
04 Miscellaneous 14 Romance
05 Suspense/Horror 15 Western
06 Sci-Fi/Fantasy 16 Musical/Arts
07 Thriller 17 Documentary
08 Art/Foreign 18 Special Interest
09 Animation 19 Adult Audience
10 Horror 20 Features

TABLE I: Yahoo! Webscope R4 Genres

Movielens 10M2. This dataset contains 10,000,054 ratings
and 95,580 tags related to 10,681 movies by 71,567 users that
were selected at random from MovieLens (a movie recommen-
dation website). All the users in the dataset had rated at least
20 movies, and each user is represented by an unique ID. The
ratings of the items are based on a 5-star scale, with half-star
increments. As shown in Table II, in this dataset the items are
classified by Movielens in 18 different classes (movie genres),
and it is should be noted that also in this case each item may
be classified with multiple classes.

01 Action 10 Film-Noir
02 Adventure 11 Horror
03 Animation 12 Musical
04 Children’s 13 Mystery
05 Comedy 14 Romance
06 Crime 15 Sci-Fi
07 Documentary 16 Thriller
08 Drama 17 War
09 Fantasy 18 Western

TABLE II: Movielens 10M Genres

Fig. 1 and Fig. 2 show the distribution of the popularities
for the Yahoo! Webscope R4 and the Movielens 10M datasets.

1http://webscope.sandbox.yahoo.com
2http://grouplens.org/datasets/movielens/

In Fig. 1, we can see that 41% of the preferences are all
in a single class (in other words, nearly half of the positive
ratings that the users give are for the same genre of movies)
and, by considering as characterizing only the classes with
popularity ≥ 1% (represented by the ∆ area), it is possible
to observe that user preferences are distributed on 6 out of 20
classes. Fig. 2 shows that in the Movielens dataset preference
stability has a lower impact. In fact, 26% of the ratings are
in the most important class for each user, and 10 out of 18
classes are involved in the user preferences.

This analysis showed that preferences stability exists in
terms of classes, and that user preferences are distributed
between 30% and 55% of the classes. Based on these results,
in the next section we are going to deepen our knowledge on
the user preferences in terms of classes, in order to accurately
model them.
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Fig. 1: Webscope-R4 - Involved Classes in the User Preferences
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Fig. 2: Movielens 10M - Involved Classes in the User Preferences

IV. OUR APPROACH

In this section we present our approach, which performs
a semantic analysis of the descriptions of the items the users
like, in order to build a model that infers where the future
preferences will go. The goal is to understand which terms
used to describe an item that a user likes characterize other
classes of items. Our modeling approach performs four steps:

1) Text Preprocessing: processing of the textual information
(description, title, etc.) present in all items, in order to
remove the useless elements for the subsequent operation
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of synset retrieving;

2) User Modeling: creation of a model that contains which
synsets are present in the items a user likes;

3) Semantic Binary Sieve Construction: creation of a
binary vector for each class of items, and subsequent
definition of the Semantic Binary Sieves (SBS), a series
of filters that we use to estimate which synsets are
relevant for that class;

4) Class Path Information Modeling: definition of the
Class Path Information (CPI) model that, based on the
semantic analyses performed in the previous steps, infers
the user preferences in terms of classes.

Note that all steps are based on the use of WordNet synsets,
which allows us to consider the semantics of the content,
without performing complex operations on it. In the following,
we will describe in detail how each step works.

A. Text Preprocessing

Before extracting the WordNet synsets from the text that
describes each item, we need to follow several preprocessing
steps. The first step is to detect the correct Part-Of-Speech
(POS) for each word in the text; in order to perform this
task, we have used the Stanford Log-linear Part-Of-Speech
Tagger [17]. In the second step we remove punctuation marks
and stop-words, which represent noise in the semantic analysis.
Several stop-words lists can be found in the Internet, and in
this work we have used a list of 429 stop-words made available
with the Onix Text Retrieval Toolkit3. In the third step, after we
have determined the lemma of each word using the Java API
implementation for WordNet Searching JAWS4, we perform
the so-called word sense disambiguation, a process where the
correct sense of each word is determined, which permits us to
individuate the appropriate synset in a precise way. The best
sense of each word in a sentence was found using the Java
implementation of the adapted Lesk algorithm provided by
the Denmark Technical University similarity application [18].
All the collected synsets form the set S = {s1, . . . , sW }
defined in Section II. The output of this step is the semantic
disambiguation of the textual description of each item i ∈ I ,
which is stored in a binary vector dsi; each element of the
vector dsi[w] is 1 if the corresponding synset is a part of the
item description, and 0 otherwise.

B. User Modeling

For each user u ∈ U , this steps considers the set of items
Iu she/he likes, and builds a user model mu that describes
which synsets characterize the user profile (i.e., which synsets
appear in the semantic description of these items). Each model
mu is a binary vector that contains an element for each synset
sw ∈ S.

In order to build the vector, we consider the semantic
description dsi of each item i ∈ Iu for which the user
expressed a positive preference. In order to build mu, this step
performs the following operation on each element w:

3http://www.lextek.com/manuals/onix/stopwords.html
4http://lyle.smu.edu/ tspell/jaws/index.html

mu[w] =

{
1, if dsi[w] = 1
mu[w], otherwise

(3)

This means that if the semantic description of an item i
contains the synset sw, the synset becomes relevant for the
user, and we set to 1 the bit at position w in the user model
mu; otherwise, its value remains unaltered. By performing this
operation for all the items i ∈ Iu, we model which synsets are
relevant for the user. The output of this step is a set M =
{m1, . . . ,mN} of user models (note that we have a model for
each user, so |M | = |U |).

C. Semantic Binary Sieve Construction

For each class c ∈ C, we create a binary vector that will
store which synsets are relevant for that class. These vectors,
called Semantic Binary Sieves, will be stored in a set B =
{b1, . . . , bK} (note that |B| = |C|, since we have a vector for
each class). Each vector bk ∈ B contains an element for each
synset sw ∈ S (i.e., |bk| = |S|).

In order to build the vector, we consider the semantic
description dsi of each item i ∈ I+ for which there is a positive
preference, and each class ck with whom i was classified. The
binary vector bk will store which synsets are relevant for a class
ck, by performing the following operation on each element
bk[w] of the vector:

bk[w] =

{
1, if dsi[w] = 1 ∧ i ∈ ck
bk[w], otherwise

(4)

In other words, if the semantic description of an item i
contains the synset sw, the synset becomes relevant for each
class ck that classifies i, and the semantic binary sieve bk
associated to ck has the bit at position w set to 1; otherwise,
its value remains unaltered. By performing this operation for
all the items i ∈ I+ that are classified with ck, we know which
synsets are relevant for the class.

D. Class Path Information Modeling

This step compares the output of the two previous steps
(i.e., the set B of binary vectors related to the Semantic Binary
Sieves, and the set M of binary vectors related to the user
models), in order to infer which classes are relevant for a
user and where the future user preferences will go. The main
idea is to consider which synsets are relevant for a user u
(this information is stored in the user model mu) and evaluate
which classes are characterized by the synsets in mu (this
information is contained in each vector bk, which contains
which synsets are relevant for the class ck). The objective is
to build a relevance score ru[k], which indicates the relevance
of the class ck for the user u.

The key concept behind this step is that we do not consider
the items a user evaluated anymore. Each vector in B is used
as a filter (this is why the vectors are called semantic binary
sieves), which allows us to estimate the relevance of each class
for that user. Therefore, the relevance score of a class for a user
can be used to infer where the future preferences of the users
will go, since a user might be associated to classes of items
she/he never expressed a preference for, but characterized by
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synsets that also characterize the user model. By ordering the
relevance scores in decreasing order (from the most to the least
relevant), we can build a model, named Class Path Information
(CPI), which can be used to build recommendations for the
users. Indeed, we a recommender system might use this model
to know which classes are relevant for the user, and with which
score.

By considering each semantic binary sieve bk ∈ B asso-
ciated to the class ck and the user model mu, we define a
matching criteria Θ between each synset mu[w] in the user
model, and the corresponding synset bk[w] in the semantic
binary sieve, by adding 1 to the relevance score of that class
for the user (element ru[k]) if the synset is set to 1 both in the
semantic binary sieve and in the user model, and leaving the
current value as it is otherwise. The semantic of the operator
is shown in Equation (5).

bk[w]Θmu[w] =

{
ru[k] + +, if mu[w] = 1 ∧ bk[w] = 1
ru[k], otherwise

(5)

By comparing a user model mu with each vector bk ∈ B,
we obtain a vector ru that contains the relevance score of each
class for the user (i.e., |ru| = |C|). The relevance scores of
each class for each user are sorted in decreasing order to build
the CPI model for a user u (i.e., each model respects the
following property: ru(c1) ≥ . . . ≥ ru(cK)):

CPIu = (ru(c1), . . . , ru(cK)) (6)

The output of this step is a Class Path Information model
CPIu for each user u ∈ U .

V. EXPERIMENTAL FRAMEWORK

The experimental framework was developed by using a
machine with an Intel Pentium CPU P6100 Dual Core (2 GHz
× 2) and a Linux 64-bit Operating System (Debian Wheezy)
with 4 GBytes of RAM. The environment for this work is
based on the Java language, with the support of Java API
implementation for WordNet Searching (JAWS) to perform the
semantic measures, and the support of Apache Mahout5 Java
framework to implement the state-of-the-art approach that we
compare our CPI modeling approach with.

This section first describes the dataset and the preprocess-
ing performed on the data, then we describe the strategy used
to perform the evaluation, the metrics, and we conclude by
presenting the experimental results.

A. Dataset and Data Preprocessing

We performed our experiments using the Yahoo! Webscope
Movie dataset (R4) described in Section III. Note that we
had to limit our evaluation only to one of the two datasets
previously considered, since the Movielens 10M dataset does
not contain any textual description of the items.

In order to create a binary sieve for each class considered
to build a CPI model for each user (we take in account only

5https://mahout.apache.org

the 2,309 users available in the test set), we need to define an
ontology of synsets based on the descriptions of the items. To
perform this operation we considered the description and title
of each movie, and since the used algorithm considers only
the items with a rating above the average, we selected only
the movies with a rating ≥ 3.

B. Strategy

The objective of our approach is to create a model that
infers the preferences of the users in terms of classes, not
only relying on the ground truth. As stated in the motivation
of our work, the main domain of application that could benefit
of this modeling approach are recommender systems, which
build predictions for the items not yet evaluated. Therefore, we
applied a state-of-the-art recommender system to our dataset,
and evaluated for each user u the set of classes Cu for which
a positive value was predicted, and compared them with the
CPIu model built for that user.

The system chosen for the comparison is SVD++ [19], the
Koren’s version of SVD [20] that has been proved to be one of
the most accurate approaches. The SVD++ approach, which we
implemented through the Mahout functionalities, in addition
to the training dataset requires two additional parameters: the
number of target features and the number of training steps
to run. After a training of the parameters, the algorithm was
run with the following setting: the first parameter would be
equivalent to the number of involved genres, thus we have set
this value to 20; about the second parameter, considering that
larger values mean longer training time, and that we have not
experienced significant improvements with higher values, we
have chosen the value of 4.

We required the system to produce N recommendations for
each user and tested different values of the parameter (more
specifically, N = {20, 40, ..., 100}). The classes involved
in the recommended items were almost identical in all the
settings, therefore we chose N = 100 to perform an evaluation
in which as much information as possible was available for the
comparison.

We compare the results in relation about two different
aspects:

• Evaluation of preference stability. We perform
the same analysis performed in Section III, and
measure the average number of classes involved in
our CPI models and their popularity (i.e., how
many positive preferences are associated to each
class). The objective is to understand how capable
our modeling approach is at reducing the effects
of preference stability (which, as highlighted in the
Introduction, introduces overspecialization problems),
by extending the ground truth;

• Evaluation of the classes included in the model.
In order to evaluate the significance of the produced
models, we evaluate the overlap between the classes
produced by the CPI model and the classes involved
in the items recommended by SVD++, by measuring
the Jaccard index between the sets Cu and CPIu.
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C. Metrics

The popularity metric, which allows to measure prefer-
ence stability, was already introduced in Section III (Equa-
tion 2). The evaluation of the classes included in the model
has been performed by measuring the Jaccard index, in order
to measure the overlap between the classes included in our
CPI model (denoted as Cu(CPI)), and those that classify the
items recommended by SVD++ (denoted as Cu(SDV + +):

J(Cu(CPI), Cu(SDV + +)) = |Cu(CPI)∩Cu(SDV++)|
|Cu(CPI)∪Cu(SDV++)| (7)

During this operation we considered the three most relevant
classes identified by the two approaches.

D. Experimental Results

This section presents the results obtained by the two
evaluations previously presented.

1) Evaluation of preference stability: Fig. 3 shows pref-
erence stability for both approaches. The results show that
the effect of preference stability is strongly reduced by our
approach. In fact the number of classes involved in the model
is now 10 (remember that in Section III we showed that user
preferences were distributed over 6 classes). This shows an
important first result, which is the capability of our approach
to extend the ground truth and to be able to characterize user
preferences over a larger set of classes, without considering the
preferences of the other users. By enlarging the set of classes,
we can also see that the popularity of each class (i.e., the
number of preferences expressed for the items that belong to
a class), is also strongly reduced; indeed, we move from 46%
of preferences that characterize the main class of each user to
a 27.2% value. We can also notice that the amount of classes
inferred by our model that has a popularity ≥ 1% is exactly
the same available in the Cu(SV D + +) models. This means
that our approach is able to characterize user preferences
in terms of classes without producing any comparison with
the preferences of the other users, thus strongly reducing the
computational load necessary to infer what a user is going to
like.

2) Evaluation of the classes included in the model: The
previous analysis showed that the number of classes involved
in our CPI models is the same of those produced by the
SV D + + predictions. However, this result is not enough
to validate our model, as the two sets of classes might be
completely different. For each user we measured the Jaccard
index on the sets of classes and averaged the obtained values.
The average value of all results is 0.8218, which demonstrates
that the most popular classes recommended through our CPI
model are almost the same of the SVD++ approach. This
demonstrates that in spite its simplicity, the CPI approach op-
erates within the same range of items of a canonical approach
at the state of the art.
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Fig. 3: Class Distribution by Popularity

VI. RELATED WORK

Likewise to other contexts, in recommender systems the
preferences of the users about new choices (goods or services)
tend to follow the behavior of the other users with similar
tastes. This is a well-known phenomenon, called homophily,
that in the recommender systems environment is embraced by
the most common strategies used to recommend new items
(e.g., content-based [8] and collaborative-filtering [21], [22]
approaches). If on the one hand this approach leads toward
items of likely interest to users, on the other hand it reduces
the range of items of potential interest that a system could
recommend, augmenting the serendipity problem, in a scenario
known as the filter bubble [14]. The serendipity problem,
i.e., the ability for a recommender system to suggest items
of potential interest to the user that are not trivial, i.e.,
too similar to those in a user profile. In some works, such
as [7], serendipity is briefly described as a measure of how
surprising the successful recommendations are. The same work
discusses the serendipity as the deviation from the natural
prediction [23], and introduces the opportunity to estimate
an optimal deviation value to use in order to make recom-
mendations, underlining the risk related to an inappropriate
measurement, which can lead toward a loss of user trust in
regard to the recommendation system. A disadvantage that
affects those recommender systems that take into account the
diversity [24], is that they still operate within the classes of
items for which users have expressed an explicit liking.

Another well-known problem is the so called selective
exposure, i.e. the tendency of users to make their choices
(goods or services) based only on their usual preferences, a
typical way to proceed that excludes the possibility for the
users to find new items that may be of interest to them [25].
The literature presents several approaches that try to reduce
this problem, e.g., the NewsCube [26] that operates offering to
the users several points of views, in order to stimulate them
to make different and not usual choices.

In order to represent the user preferences and improve the
effectiveness of the suggestions, in the literature we can find
several approaches. For instance, users can be classified based
on some explicit features (e.g., their demographic data) by
extracting this information from sources such as Twitter [27],
or based on other implicit features extracted through a more
complex analysis of the same sources [28]. In [29], an ap-
proach to preprocess the users profiles in order to detect and
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remove the items that generate noise and could make the
profiles not adherent to the real tastes of the users is also
presented.

The serendipity problem shows that a challenge in this
area is then to identify a method able to make effective
predictions, exploiting not only the information present in the
user profiles. Our approach faces this problem by introducing a
new modeling approach based on the class of items instead of
considering the items. This is a new strategy of classification
based on the classes that extend the set of possible items
to recommend, taking also in account those distant from the
previous choices of the users, although within their favorite
classes of items. The use of a class-based model is also able
to reduce the entity of the selective exposure problem, because
it selects the items within a broader set of classes.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a new approach that models
user preferences in terms of classes. Our approach is based on
a semantic analysis that performs a matching operation over
the semantic relations (synsets) that characterize the items of
a class and those that characterize the items a user prefers.
In order to do so, we generate a set of binary filters (called
Semantic Binary Sieves) that characterize each class, and used
to build a relevance score of that class for the users. The
relevance scores are combined in a ranked list of classes, called
Class Path Information model.

Experimental results showed the capability of our ap-
proach to extend the ground truth and infer where the future
preferences of the users will go. Indeed, by comparing our
models with the set of classes of the items predicted by a
state-of-the-art recommender system, we highlighted a strong
overlap between them. This means that our approach is able
to accurately infer user preferences in terms of classes, and
that the generated models can be employed by a recommender
system to select items within the set of classes included in
the model. The advantages are both on the computational
load, since the system avoids calculating the semantic distance
between the items, and on the possibility to recommend items
that are not too dissimilar to those she/he already positively
evaluated.

Future work will investigate the effectiveness of our model-
ing technique at supporting a recommender system to produce
serendipitous item recommendations. The idea is to produce
the recommendations considering the classes available in the
model, which are semantically related to the items a user likes,
but are not the same. This would allow us to produce serendip-
ity, without the negative consequences caused by diversity.
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