
Exploiting the Evaluation Frequency of the Items to

Enhance the Recommendation Accuracy

Roberto Saia, Ludovico Boratto, Salvatore Carta

Dipartimento di Matematica e Informatica

Università di Cagliari

Via Ospedale 72, 09124 - Cagliari, Italy

Email: roberto.saia@unica.it, ludovico.boratto@acm.org, salvatore@unica.it

Abstract—The main task of a recommender system is to
suggest a list of items that users may be interested in. In this
paper, we focus on the role that the popularity of the items plays
in the recommendation process. If on the one hand, considering
only the most popular items generates trivial recommendations,
on the other hand, not taking in consideration the item popularity
could lead to a non-optimal performance of a system, since it does
not differentiate the items, giving them the same weight during
the recommendation process. Therefore, we could risk to exclude
from the recommendations some popular items that would have
a high probability of being preferred by the users, suggesting
instead others that, despite meeting the selection criteria, have
less chance to be preferred. The proposed strategy aims to employ
in the recommendation process new criteria based on the items’
popularity, by introducing two novel metrics. Through the first
metric we evaluate the semantic relevance of an item with respect
to the user profile, while through the second metric, we measure
how much it is preferred by users. Through a post-processing
approach, we use these metrics in order to extend one of the most
performing state-of-the-art recommendation techniques: SVD++.
The effectiveness of this hybrid recommendation strategy has
been verified through a series of experiments, which show strong
improvements in terms of accuracy w.r.t. SVD++.

Keywords—Semantic Analysis, Collaborative Filtering, Popular-
ity, Metrics.

I. INTRODUCTION

In order to lead the potential buyers toward a number of
well-targeted suggestions, related to the large amount of goods
or services, a Recommender System (RS) plays a determinant
role, since it is able to investigate on the user preferences,
suggesting to users the items that could be interesting. In
order to identify these items, a RS has to predict that an
item is worth recommending [1]. Most of the strategies used
to generate the recommendations are based on the so-called
Collaborative Filtering (CF) approach [2], which is based on
the assumption that users have similar preferences on a item
if they have already rated other items in a similar way [3].
The rating prediction has been highlighted in the literature as
the core recommendation task [1], and recent studies showed
its effectiveness also in improving classification tasks [4],
[5], [6]. In recent years, the latent factor models have been
adopted in CF approaches with the aim to uncover latent
characteristics that explain the observed ratings [7]. Some of
the most common approaches of this type are those that exploit
the neural networks [8], the Latent Dirichlet Allocation [9],
but especially, those that exploit a model induced by the
factorization of the user-item rating matrix [10] (i.e., the matrix

that reports the ratings given to the items by the users).
Among these last approaches, the state of the art is represented
by SVD++ [11], the Koren’s version of the Singular Value
Decomposition (SVD) [12], which exploits the so-called latent
factor model and presents good performance in terms of
accuracy and scalability [13], [10]. Although SVD++ provides
excellent performance, it does not take into account the factor
of popularity of the items that are recommended, risking to
penalize its performance under certain circumstances. This
can happen when the same score is given to multiple items,
since not being able to discriminate them on the basis of their
popularity, there is the risk to recommend those unpopular,
which are less likely to be preferred by the users.

The popularity of the items is an aspect that has been
widely studied in the recommender systems literature. While
their ability to identify items of potential interest to the users
has been recognized, some limitations have been highlighted.
The most important of these is that the recommendations made
according to popularity criteria are trivial, and do not bring
considerable benefits neither to users, nor to those that offer
them goods or services. This happens when a system employs
the so-called non-personalized model [14], a naive approach
of recommendation that does not take into account the user
preferences, because it always recommends a fixed list with
the most popular items, regardless of the target user. On the
other hand, however, recommending less popular items adds
novelty (and also serendipity) [15] to the users, but usually it
is a more difficult task to perform.

Another possible limitation that might occur when produc-
ing recommendations considering only the ratings is the fact
that these approaches ignore the semantic relations between the
words in the item descriptions. Therefore, thanks to the advent
of the so-called Semantic Web [16], other strategies, based
on semantic criteria [17], [18], have also spread. The main
advantage is their capability to interpret the user preferences
in a non-schematic mode, helping to understand the concepts
that are connected with a text, which can be used to determine
the similarity between items, instead of merely using the
single terms in their textual description. In the literature it
has been shown that some filtering methodologies can be used
to pre-process the user profiles, in order to remove from them
some useless items, increasing the accuracy of a recommender
system [19].

This work aims at improving the recommendations pro-
duced by the SDV++ approach, by considering also the se-
mantics behind the items and the items’ popularity. This is

SVD++
Output

Calculate
SPI

Calculate
DPI

Re-ranking
SVD++

PBSVD++
Output

Fig. 1: Approach Architecture

done by employing two different strategies. The first strategy
involves a balanced use of two indices of item popularity: one
based on the positive feedbacks of the users, and one based on
the conceptual similarity of the textual description of an item
with the descriptions of the other ones positively evaluated in
the past. The second strategy consists in the application of
these two metrics within the boundaries of a recommendation
list, generated through a state-of-the-art approach based on
the latent factor model (the so-called SVD++ approach [11]),
instead of using the entire dataset. This way of proceeding
allows us to exploit the popularity metrics to perform a fine-
tuning of the recommendations generated by a strategy at the
state of the art, which does not take into account the items
popularity, by improving the effectiveness of the generated
recommendations. In conclusion, the proposed metrics enhance
the performance of SVD++, since they are able to consider the
popularity factor during its ranking process, giving priority to
the items that have a high probability of being preferred by
the users.

The contributions of our work are the following:

• definition of the Semantic Popularity Index (SPI), a metric
able to evaluate the semantic popularity of an item,
relatively to the items in a user profile;

• definition of the Domain Popularity Index (DPI), a metric
able to evaluate the preferences of the users about an item;

• creation of the PBSVD++ algorithm, which extends the
capabilities of SVD++, adding to it the capability to
evaluate the item popularity.

The block diagram in Fig. 1 introduces the high level
architecture of our approach. In the rest of this paper, we
first introduce the literature related with the proposed strategy
(Section II), continuing to define the adopted notation and the
problem definition (Section III), the item popularity criteria
(Section IV), and the implementation details of the PBSVD++
strategy (Section V). Finally, we complete the paper with the
description of the performed experiments (Section VI), ending
with some concluding remarks (Section VII).

II. RELATED WORK

The recommender systems based on the so-called non-
personalized models [14], propose to all users the same
list of recommendations, without taking into account their
preferences. This static approach is usually based on two

algorithms, the first of them (TopPop), operates by suggesting
the most rated items (i.e., those most popular), while the
second (MovieAvg), works by suggesting the highest rated
items (i.e., those most liked). The exclusive use of the non-
personalized models, leads toward the absence of two impor-
tant characteristic that a recommender system should have, i.e.,
novelty and serendipity [20]. Novelty occurs when a system
is able to recommend unknown items that a user might have
autonomously found, while serendipity happens when it helps
the user to find a surprisingly interesting item that a user might
not have otherwise found, or that it is very hard to find.

The type of data with which a recommender system oper-
ates is typically a sparse matrix where the rows represent the
users, and the columns represent the items. The entries of this
matrix are the interactions between users and items, in the form
of ratings or purchases. The aim of a recommender system is
to infer, for each user u, a ranked list of items, and in literature
many of them are focused on the rating prediction problem.
The most effective strategies in this field exploit the so-called
latent factor models, but especially, the matrix factorization
techniques [10]. Other CF ranking-oriented approaches that
extend the matrix factorization techniques, have been recently
proposed, and most of them use a ranking oriented objective
function, in order to learn the latent factors of users and items
[21]. SVD++ [11], the Koren’s version of the Singular Value
Decomposition (SVD) [12], is today considered one of the best
strategies in terms of accuracy and scalability. In [22], [23],
[24], the problem of modeling semantically correlated items
was tackled, but the authors consider a temporal correlation
and not the one between the items and a user profile.

III. NOTATION AND PROBLEM DEFINITION

The mathematical notation used in this work, and the
problem statement, are recalled in the following.

A. Notation

We consider a set of users U = {u1, . . . , uN}, a set
of items I = {i1, . . . , iM}, and a set V of values used
to express the user preferences (e.g., V = [1, 5] or V =
{like, dislike}). The set of preferences expressed by the
users is a ternary relation P ⊆ U × I × V . We denote as
P+ ⊆ P the subset of preferences with a positive value
(i.e., P+ = {(u, i, v) ∈ P |v ≥ v ∨ v = like}), where v
indicates the mean value (in the previous example, v = 3).
Moreover, we denote as I+ = {i ∈ I|∃(u, i, v) ∈ P+} the
set of items for which there is a positive preference, and as
npi,U = |(u, i, v) ∈ P+|, i ∈ I, ∀u ∈ U the number of positive
preferences of the users in U for an item i. We also denote
as Iu = {i ∈ I|∃(u, i, v) ∈ P ∧ u ∈ U} the set of items in
the profile of a user u, and as Ru = {u ∈ U ∧ R ⊆ I}, the
set of items i recommended to a user u. The set of items I
without the items already evaluated by the user u (i.e., those

in Iu) is denoted as Îu ⊆ I . Let BoW = {t1, . . . , tW } be the
bag of words used to describe the items in I; we define as
S = {s1, . . . , sW } the set of synsets associated to BoW (that
is, for each term used to describe an item, we consider the
associated synsets), as sdi the semantic description of i, and
as sdI,u the semantic description of all items i in the profile
of the user u. The set of semantic descriptions is denoted as
D = {sd1, . . . , sdM} (we have a semantic description for each

item, so |D| = |I|). The approach used to extract sdi and sdI,u
from di is described in detail in Section V.

B. Problem definition

We consider the function f : U × I → V , adopted to
predict the ratings for the not evaluated items with the SVD++
recommender system. Our aim is to define, for each item,
a Semantic Popularity Index SPI(i, u), able to evaluate the

semantic relevance of each item i ∈ Îu with respect to the
user profile Iu, and a Domain Popularity Index DPI(i) that
represents the popularity of the item with respect to the others
in the dataset (in terms of positive evaluations given by the
users to it). By defining a combined score α that involves
both popularity indexes, our objective is to generate a list of
recommended items i∗ such that:

i∗ = argmax
j∈Îu

f(u, j) + α (1)

IV. ITEMS POPULARITY

In the following, we introduce and formalize the two
popularity indexes employed in our approach.

Semantic Popularity Index. The Semantic Popularity
Index (SPI) for an item i ∈ I , with SPI ∈ [0, 1], is
calculated as shown in Formula 2, where sdi denotes the
set of synsets extracted from the description of an item i
to evaluate, and sdI,u the set of synsets extracted from the
description of the items I in the profile of the target user
u. It measures the conceptual similarity between these sets,
and represents the precision (Section VI-D1), calculated for
the item in the context of the user profile. SPI represents
an important indicator, since through it we can estimate the
level of (semantic) similarity of an item with the user tastes,
represented in terms of items positively evaluated in the past.

SPI(i, u) =
|sdi ∩ sdI,u|

|sdi|
(2)

Domain Popularity Index. The value of the Domain Pop-
ularity Index (DPI) for an item i ∈ I , with DPI ∈ [0, 1],
represents the number npi,U of positive preferences expressed
by all users U for the item i. It is calculated as shown in
Formula 3. DPI is also an important indicator, because it
extends the local information provided by SPI (related to the
single users), providing a global measure of the preferences
expressed for an item by all users.

DPI(i, U) =
npi,U∑

∀j∈I

npj,U
(3)

V. IMPLEMENTATION

In this section we present the steps made to generate
the recommendations based on the proposed Popularity-based
SVD++ (PBSVD++) strategy, starting from the extraction of
the WordNet1 synsets related to the textual description of the
involved items, and ending with the implementation of the
novel algorithm. These operations can be grouped into two
steps: Text Preprocessing and PBSVD++ Algorithm Definition.
In the first step, we process the textual description of the items
in order to remove the useless elements, before the subsequent
operation of synset retrieving. In the second step, we define the

1
A lexical database that groups words into set of synonyms called synsets

PBSVD++ algorithm, through which we can alter the original
ranking of the SVD++ recommendations, by employing the
SPI and DPI criteria.

A. Text Preprocessing

Motivated by the fact that exploiting a taxonomy for cat-
egorization and classification purposes is an approach recog-
nized in the literature [25], [26], [27], in order to calculate the
semantic correlation between the items we decided to exploit
the functionalities offered by the WordNet environment. Before
extracting the WordNet synsets from the text that describes
each item, we need to follow several preprocessing steps. The
first step is to detect the correct Part-Of-Speech (POS) for each
word in the text. In order to perform this task, we have used the
Stanford Log-linear Part-Of-Speech Tagger [28]. In the second
step we remove punctuation marks and stop-words, which rep-
resent noise in the semantic analysis. In the third step, after we
have determined the lemma of each word using the Java API
implementation for WordNet Searching JAWS2, we perform
the so-called word sense disambiguation, a process where the
correct sense of each word is determined, which permits us to
individuate the appropriate synset in a precise way. The best
sense of each word in a sentence was found using the Java
implementation of the adapted Lesk algorithm provided by
the Denmark Technical University similarity application [29].
All the collected synsets form the set S = {s1, . . . , sW }
defined in Section III. The output of this step is the semantic
disambiguation of the textual description of each item i ∈ I ,
denoted as sdi. For each user, we also extract an additional
vector sdI,u, which contains all the synsets that characterize
the items she/he positively evaluated.

B. PBSVD++ Algorithm

We exploit the SPI and DPI metrics (explained in Sec-
tion IV), in order to modify the result of the SVD++ approach,
in accord with these two parameters. These two metrics are
implemented in the Algorithm 1, where we merge them in
a unique value α, given by their product. Given a set of
recommendations Ru, addressed to a user u ∈ U , the final
rating ρi,u assigned to each item i ∈ Ru by our algorithm,
is composed by the ratingi,u calculated through the SVD++
approach, normalized in a continuous range from 0 to 1, and
denoted as STD(i, u), added to the product of the two indices
SPI and DPI (also normalized in a continuous range from 0
to 1), as shown in Formula 4. The final rating assigned to an
item is then in the range from 0 to 2.

ρi,u = STD(i, u) +

(

SPI(i,u)∑

∀j∈Ru

SPI(j,u) ·
DPI(i,U)∑

∀j∈Ru

DPI(j,U)

)

with STD(i, u) =
ratingi,u∑

∀j∈Ru

ratingj,u

(4)

The new rating ρi,u, assigned to an item i for a user u, takes
into account, in a balanced way, both its semantic and domain
popularities, and this produces a substantial change in the
canonical SVD++ ranking during the recommendation process,
changing the performance of the recommender system.

Algorithm 1 implements the operations described above. It
takes as input the training set s (used by the SVD++ approach,

2
http://lyle.smu.edu/ tspell/jaws/index.html

in step 3, to build the latent factor model), the user u to whom
address the recommendations, and the number n of these. After
the number x of potential items to recommend to the user u has
been set (step 2), we calculate through the standard SVD++
approach, for the user u, a set I of x recommendations based
on the training set s (step 3). In the steps from 5 to 11, we
select from I only the elements i that are candidates for the
recommendations based on the proposed approach. They are
those items in which a modification of the score, by adding
to the original rating of SVD++ the value of α (parameter
calculated in the step 14, whose value is in the range from 0
to 1), could alter the rank proposed by SVD++. For this reason,
the candidates are only the items to which, adding at most 1,
we get a value higher than that of the item with the maximum
SVD++ score (i.e., the first element i0). We use this process
also to calculate (in steps 8 and 9) the sum of the SPI and DPI
weights, related to all the items i ∈ I . Starting with this set
R of candidate items, in the steps from 12 to 18, we alter the
SVD++ score of each item i ∈ I , following Formula 4, after
which we return a list L of n recommendations, composed by
the items with the higher score.

Algorithm 1 PBSVD++

Require: s=Training set, u=User, n=Recommendations

Ensure: L = List of n recommendations

1: procedure GETPBSVDRECS(s,u,n)

2: x=GetNumOfNotEvaluatedItems(u)

3: I=GetSvdRecs(s,u,x)

4: t1=0, t2=0

5: for each i in I do

6: if (SvdRating(i) + 1) >SvdRating(i0) then

7: R ← i
8: t1+=GetSPI(i)
9: t2+=GetDPI(i)

10: end if

11: end for

12: for each r in R do

13: rating=(SvdRating(r)/SumAllSvdRatings(R))

14: α = (GetSPI(r)/t1) · (GetDPI(r)/t2)
15: SetNewRating(r,rating+α)

16: end for

17: L = GetRecsDescOrdered(R, n)
18: Return L
19: end procedure

VI. EXPERIMENTS

In this section, after the definition of the experimental
environment and of the adopted datasets’ characteristics, we
describe the strategy and metrics adopted, concluding with the
presentation and discussion of the experimental results.

A. Experimental Setup

The environment for this work is based on the Java
language, with the support of Java API implementation for
WordNet Searching (JAWS) to perform the semantic analy-
sis, and the support of Apache Mahout3 Java framework to
implement the state-of-the-art approach that we compare our
approach with.

B. Datasets

In order to evaluate the proposed strategy, we perform a
series of experiments on three different real-world datasets, ex-

3
https://mahout.apache.org

tracted by two standard benchmarks for recommender systems:
Yahoo! Webscope R44 and Movielens 10M5.

Yahoo! Webscope (R4). This dataset contains a large
amount of data related to users preferences expressed by the
Yahoo! Movies community that are rated on the base of two
different scales, from 1 to 13 and from 1 to 5 (we use the
latter). The training data is composed by 7, 642 users (|U |),
11, 915 movies/items (|I|), and 211, 231 ratings (|P |). All the
users in the training set have rated at least 10 items and all
items are rated by at least one user. The test data is composed
by 2, 309 users, 2, 380 items, and 10, 136 ratings. There are no
test users/items that do not also appear in the training data. All
the users in the test set have rated at least one item and all items
have been rated by at least one user. The items are classified
in 20 different classes (genres), and it should be noted that an
item may be classified with multiple classes.

Movielens 10M. The second dataset used in this work is
composed by 71, 567 users (|U |), 10, 681 movies/items (|I|),
and 10, 000, 054 ratings (|P |). It was extracted at random from
MovieLens (a movie recommendation website). All the users
in the dataset had rated at least 20 movies, and each user is
represented by a unique ID. The ratings of the items are based
on a 5-star scale, with half-star increments. In this dataset the
items are classified in 18 different classes (movie genres), and
also in this case each item may be classified with multiple
classes (genres). Since the Movielens 10M dataset does not
contain any textual description of the items, to obtain this
information we used a file provided by the Webscope (R4)
dataset, which contains a mapping from the movie IDs used
in the dataset to the corresponding movie IDs and titles used
in the MovieLens dataset. Using the script provided with the
Movielens 10M dataset, we split up the whole dataset in two
different datasets with exactly 10 ratings per user in the test set.
Both training sets are composed by 69, 878 users (|U |), and
9, 301, 274 ratings (|P |), with 10, 667 movies/items (|I|) in
the first one, and 10, 676 movies/items (|I|) in the second one.
Each test dataset contains 69, 878 users (|U |), and 698, 780
ratings (|P |), with 3, 326 movies/items (|I|) in the first one,
and 5, 724 movies/items (|I|) in the second one. From each of
these datasets, we take in account a subset of 20, 000 users.

C. Strategy

We compare the proposed recommendation strategy with
the state-of-the-art approach SVD++. The Mahout framework,
used to implement it, in addition to the training set requires two
parameters: the number of target features and the number of
training steps to run. The first parameter would be equivalent
to the number of involved genres, thus we have set this value to
20 for the Yahoo dataset, and to 18 for the Movielens datasets.
Regarding the second parameter, we use the value 15, as
indicated in the reference paper of the SVD++ algorithm [11].

D. Metrics

This section presents the metrics used in the experiments.

4
http://webscope.sandbox.yahoo.com

5
http://grouplens.org/datasets/movielens/

1) F1-Measure: The performance measure adopted to eval-
uate our approach, comparing the set of recommendations
generated by our strategy and the set of those generated by
the canonical approach of recommendation with the real user
preferences stored in the test set, is the F1-Measure [30]
metrics. Given two sets Xu and Zu, where Xu denotes the
set of recommendations performed for a user u, and Zu the
set of the real choices of the user u in the testset, this metric
is defined as shown in Equation (5).

F1-Measure(Xu, Zu) = 2
(precision(Xu, Zu) · recall(Xu, Zu))

(precision(Xu, Zu) + recall(Xu, Zu))
with

precision(Xu, Zu) =
|Zu ∩Xu|

|Xu|
, recall(Xu, Zu) =

|Zu ∩Xu|

|Zu|

(5)

2) Metrics Evaluation: In order to compare the results of
the two approaches of recommendation (i.e., our approach
based on the PBSVD++ algorithm, and the canonical one,
based on SVD++), we calculate the F1-Measure metric,
presented in Equation (5), for each group of n performed
recommendations (denoted as @n, with n = {2, 4, . . . , 20}),
subtracting from the values obtained by our approach those
obtained by SVD++. In this way, a positive value denotes that
our approach improves the standard one, while a negative value
denotes that our approach worsens the standard one. A zero
value means that the results are identical (i.e., proposed and
standard approaches report the same performance). Denoting
as Xn the set of n recommendations generated by our strat-
egy, as Yn the set of n recommendations generated by the
canonical SVD++ strategy, and as Zn the set of n real user
preferences stored in the testset, we define the measure shown
in Equation (6).

F1-variation@n = F1-Measure@n(Xn, Zn)− F1-Measure@n(Yn, Zn) (6)

E. Experimental Results

Here, we report the results of the experiments.

1) Performance Overview and Details: The result pre-
sented in the part (a) of Figure 2 shows the general perfor-
mance of the proposed strategy in the context of the three
considered real-world datasets. It indicates the percentage of
times in which we have done better, or have done worse than
SVD++ (respectively, B and W). The overall results show the
good performance of our approach with all three datasets. In
the second set of experiments we compare the performance
of a recommender system where we have implemented the
PBSVD++ algorithm, with those of the canonic recommender
system based on the SVD++ algorithm. We evaluate the results
in terms of F1-variation@n, as described in Section VI-D. As
we can observe in the part (b) of Figure 2, the results are
quite similar for all three considered datasets. They show that
our strategy outperforms the canonical one, except when we
test the maximum number of recommendations (i.e., 20). This
is an obvious aspect, since the algorithm PBSVD++ operates
in the domain of the SVD++ recommendations, recalculating
their ratings: therefore, when we consider the entire domain,
the results of SVD++ and PBSVD++ are always identical.

Yahoo Mlens1 Mlens2

10

20

30

Datasets

P
e
r
c
e
n
ta

g
e

B

W

(a) General performance

2 4 6 8 10 12 14 16 18 20

0.00

0.10

0.20

Recommendations

F
1

-v
a
r
ia

ti
o
n

Yahoo

Movielens-1

Movielens-2

(b) F1-Measure@n

Fig. 2: Experiments Result

F. Discussion

The performed experiments, presented in Section VI-E1,
prove that our strategy, based on the novel PBSVD++ algo-
rithm, is able to improve the results of a canonical recom-
mender system based on the SVD++ algorithm. As we can
observe, this happens with any number of recommendations,
except the case in which the maximum number of these is
generated, for the obvious reason explained in the previous
section. When evaluating these results, we can observe that the
maximum value of positive variation for the metric is 1 (which
represents a 100% improvement w.r.t. SVD++). Considering
that we are confronted with a strategy of recommendation to
the state of the art as SVD++, that offers a little margin of
improvement, the results obtained can be considered highly
satisfactory, also considering that we never did worse than
SVD++. This proves that is possible to improve a state-of-
the-art approach such as SVD++, by using its output as an
input domain, in order to perform a fine-tuning based on the
popularity of the involved items. Concluding, it should be
noted that, although our approach outperforms SVD++ in the
entire range of recommendations, it produces the best results
with a few number of them. This represents an important
aspect, considering the difficulty for a recommender system to
make correct predictions, by generating few recommendations.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposed a new hybrid approach of recommen-
dation, based on a novel algorithm called PBSVD++, which
extends the state-of-the-art SVD++ strategy, adding to it the
ability to evaluate two item popularity metrics. The performed
experiments have shown both the validity of the adopted
indexes, and their ability to improve the performance of the
SVD++ approach. There is a possible application in a wide
range of contexts, in primis those related to the recommender
systems which operate in a commercial environment. In future

work, we will extend our approach, by adding new metrics able
to evaluate the item popularity, in the context of systems that
operate within more than one domain of goods/services, trying
to parametrize both the popularity aspect of each item, and
their interconnections between different operative domains. We
will also study the introduction of others metrics of popularity,
e.g., based on the geographic or demographic information.

ACKNOWLEDGMENT

This work is partially funded by Regione Sardegna un-
der project SocialGlue, through PIA - Pacchetti Integrati
di Agevolazione “Industria Artigianato e Servizi” (annualità
2010), and by MIUR PRIN 2010-11 under project “Security
Horizons”.

REFERENCES

[1] F. Ricci, L. Rokach, and B. Shapira, “Introduction to recommender
systems handbook,” in Recommender Systems Handbook, F. Ricci,
L. Rokach, B. Shapira, and P. B. Kantor, Eds. Springer, 2011, pp.
1–35.

[2] G. Karypis, “Evaluation of item-based top-n recommendation algo-
rithms,” in Proceedings of the 2001 ACM CIKM International Con-

ference on Information and Knowledge Management. ACM, 2001, pp.
247–254.

[3] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Adv. Artificial Intellegence, vol. 2009, 2009.

[4] G. Armano and E. Vargiu, “A unifying view of contextual advertising
and recommender systems,” in KDIR 2010 - Proceedings of the Interna-

tional Conference on Knowledge Discovery and Information Retrieval,
A. L. N. Fred and J. Filipe, Eds. SciTePress, 2010, pp. 463–466.

[5] A. Addis, G. Armano, A. Giuliani, and E. Vargiu, “A recommender sys-
tem based on a generic contextual advertising approach,” in Proceedings

of the 15th IEEE Symposium on Computers and Communications, ISCC

2010. IEEE, 2010, pp. 859–861.

[6] E. Vargiu, A. Giuliani, and G. Armano, “Improving contextual advertis-
ing by adopting collaborative filtering,” ACM Trans. Web, vol. 7, no. 3,
pp. 13:1–13:22, Sep. 2013.

[7] Y. Koren and R. M. Bell, “Advances in collaborative filtering,” in
Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and
P. B. Kantor, Eds. Springer, 2011, pp. 145–186.

[8] K. Georgiev and P. Nakov, “A non-iid framework for collaborative
filtering with restricted boltzmann machines,” in Proceedings of the

30th International Conference on Machine Learning, ICML 2013, ser.
JMLR Proceedings, vol. 28. JMLR.org, 2013, pp. 1148–1156.

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[10] Y. Koren, R. M. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” IEEE Computer, vol. 42, no. 8, pp. 30–37,
2009.

[11] Y. Koren, “Factorization meets the neighborhood: a multifaceted col-
laborative filtering model,” in Proceedings of the 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,
Y. Li, B. Liu, and S. Sarawagi, Eds. ACM, 2008, pp. 426–434.

[12] M. J. P. Daniel Billsus, “Learning collaborative information filters,”
in Proceedings of the Fifteenth International Conference on Machine

Learning (ICML 1998), J. W. Shavlik, Ed. Morgan Kaufmann, 1998,
pp. 46–54.

[13] J. Bennett, C. Elkan, B. Liu, P. Smyth, and D. Tikk, “Kdd cup and
workshop 2007,” SIGKDD Explor. Newsl., vol. 9, no. 2, pp. 51–52,
Dec. 2007.

[14] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender
algorithms on top-n recommendation tasks,” in Proceedings of the 2010

ACM Conference on Recommender Systems, RecSys 2010, X. Amatri-
ain, M. Torrens, P. Resnick, and M. Zanker, Eds. ACM, 2010, pp.
39–46.

[15] M. Ge, C. Delgado-Battenfeld, and D. Jannach, “Beyond accuracy:
evaluating recommender systems by coverage and serendipity,” in
Proceedings of the 2010 ACM Conference on Recommender Systems,

RecSys 2010, X. Amatriain, M. Torrens, P. Resnick, and M. Zanker,
Eds. ACM, 2010, pp. 257–260.

[16] T. Berners-Lee, J. Hendler, O. Lassila et al., “The semantic web,”
Scientific american, vol. 284, no. 5, pp. 28–37, 2001.

[17] T. Slimani, “Description and evaluation of semantic similarity measures
approaches,” CoRR, vol. abs/1310.8059, 2013.

[18] R. Saia, L. Boratto, and S. Carta, “A latent semantic pattern recognition
strategy for an untrivial targeted advertising,” in Big Data (BigData

Congress), 2015 IEEE International Congress on. IEEE, 2015, pp.
491–498.

[19] R. Saia, L. Boratto, and S. Carta, “Semantic coherence-based user
profile modeling in the recommender systems context,” in Proceedings

of the 6th International Conference on Knowledge Discovery and

Information Retrieval, KDIR 2014. SciTePress, 2014, pp. 154–161.

[20] L. Iaquinta, M. de Gemmis, P. Lops, G. Semeraro, M. Filannino, and
P. Molino, “Introducing serendipity in a content-based recommender
system,” in 8th International Conference on Hybrid Intelligent Systems

(HIS 2008), F. Xhafa, F. Herrera, A. Abraham, M. Köppen, and J. M.
Benı́tez, Eds. IEEE Computer Society, 2008, pp. 168–173.

[21] Y. Koren and J. Sill, “Ordrec: an ordinal model for predicting per-
sonalized item rating distributions,” in Proceedings of the 2011 ACM

Conference on Recommender Systems, RecSys 2011, B. Mobasher, R. D.
Burke, D. Jannach, and G. Adomavicius, Eds. ACM, 2011, pp. 117–
124.

[22] G. Stilo and P. Velardi, “Time makes sense: Event discovery in twitter
using temporal similarity,” in Proceedings of the 2014 IEEE/WIC/ACM

International Joint Conferences on Web Intelligence (WI) and Intelligent

Agent Technologies (IAT) - Volume 02, ser. WI-IAT ’14. Washington,
DC, USA: IEEE Computer Society, 2014, pp. 186–193.

[23] G. Stilo and P. Velardi, “Temporal semantics: Time-varying hashtag
sense clustering,” in Knowledge Engineering and Knowledge Manage-

ment, ser. Lecture Notes in Computer Science. Springer International
Publishing, 2014, vol. 8876, pp. 563–578.

[24] G. Stilo and P. Velardi, “Efficient temporal mining of micro-blog texts
and its application to event discovery,” Data Mining and Knowledge

Discovery, 2015.

[25] A. Addis, G. Armano, and E. Vargiu, “Assessing progressive filtering to
perform hierarchical text categorization in presence of input imbalance,”
in KDIR 2010 - Proceedings of the International Conference on

Knowledge Discovery and Information Retrieval, A. L. N. Fred and
J. Filipe, Eds. SciTePress, 2010, pp. 14–23.

[26] G. Armano, A. Giuliani, and E. Vargiu, “Semantic enrichment of con-
textual advertising by using concepts,” in KDIR 2011 - Proceedings of

the International Conference on Knowledge Discovery and Information

Retrieval, J. Filipe and A. L. N. Fred, Eds. SciTePress, 2011, pp.
232–237.

[27] G. Armano, A. Giuliani, and E. Vargiu, “Studying the impact of text
summarization on contextual advertising,” in 2011 Database and Expert

Systems Applications, DEXA, International Workshops, F. Morvan,
A. M. Tjoa, and R. Wagner, Eds. IEEE Computer Society, 2011,
pp. 172–176.

[28] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-
rich part-of-speech tagging with a cyclic dependency network,” in
Proceedings of the 2003 Conference of the North American Chapter

of the Association for Computational Linguistics on Human Language

Technology - Volume 1, ser. NAACL ’03. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2003, pp. 173–180.

[29] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620,
1975.

[30] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

