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Abstract: The main goal of a recommender system is to provide suggestions, by predicting a set of items that
might interest the users. In this paper, we will focus on the role that the popularity of the items can play in
the recommendation process. The main idea behind this work is that if an item with a high predicted rating
for a user is very popular, this information about its popularity can be effectively employed to select the items
to recommend. Indeed, by merging a high predicted rating with a high popularity, the effectiveness of the
produced recommendations would increase with respect to a case in which a less popular item is suggested.
The proposed strategy aims to employ in the recommendation process new criteria based on the items'
popularity, by measuring how much it is preferred by users. Through a postprocessing approach, we use
this metric to extend one of the most performing state-of-the-art recommendation techniques, i.e., SVD++.
The effectiveness of this hybrid strategy of recommendation has been verified through a series of
experiments, which show strong improvements in terms of accuracy w.r.t. SVD++.
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1. Introduction

In order to provide effective suggestions in terms of the good or services offered by a company, a
recommender system plays an essential role, since it is able to filter the user preferences, suggesting them
only the items that could be interesting. The identification of these items is based on a prediction task, than
infers the interest of a user toward an item not yet evaluated, to derive if it is worth recommending [1].
Most of the strategies used to generate the recommendations are based on the so-called Collaborative
Filtering (CF) approach [2] which is based on the assumption that users have similar preferences on an
item if they have already rated other items in a similar way [3]. In recent years, the latent factor models
have been adopted in CF approaches with the aim to uncover latent characteristics that explain the
observed ratings [4]. Some of the most common approaches of this type are those that exploit the neural
networks [5], the Latent Dirichlet Allocation [6], but especially, those that exploit a model induced by the
factorization of the user-item ratings matrix [7] (i.e., the matrix that reports the ratings given to items by
the users). Among these last approaches, the state of the art is represented by SVD++ [8], the Koren's
version of the Singular Value Decomposition (SVD) [9], which exploits the so-called latent factor model and
presents good performance in terms of accuracy and scalability [7], [10]. Although SVD++ provides
excellent performance, it does not take into account the factor of popularity of the items that are
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recommended. This might lead to an underperformance of a recommender system, in case the same score
is predicted for multiple items. Indeed, the system is not able to discriminate them on the basis of their
popularity, so there is the risk to recommend those unpopular, which are less likely to be preferred by
users. The popularity of the items is an aspect that has been widely studied in the recommender systems
literature. While their ability to identify items of potential interest to users has been recognized, some
limitations have been highlighted. The most important of these is that the recommendations made
according to popularity criteria are trivial, and do not bring considerable benefits neither to users, nor to

those that offer them goods or services. This happens when using the so-called non-personalized model [11],

a naive approach of recommendation that does not take into account the user preferences, because it

always recommends a fixed list with the most popular items, regardless of the target user. On the other

hand, however, recommending less popular items adds novelty (and also serendipity) [12] to the users, but
it usually is a more difficult task to perform.

This work aims at improving the recommendations produced by the SDV++ approach, by considering the
items' popularity. Our strategy involves a balanced use of an index of item popularity, which is based on the
positive feedbacks of the users. This index is then applied within the boundaries of a recommendation list,
generated through a state-of-the-art approach based on the latent factor model (the so-called SVD++
approach [8]), instead of using the entire dataset. This way of proceeding allows us to exploit the popularity
metrics to perform a fine-tuning of the recommendations generated by a recommendation strategy at the
state of the art, which does not take into account the item popularity, thus reducing the triviality of the final
result. The contributions of our work are the following:

o Definition of the Domain Popularity Index (DPI), a metric able to evaluate the preferences of the users
about an item;

e (reation of the PBSVD++ algorithm, which extends the capabilities of SVD++, adding to it the capability
to evaluate the item popularity;

e Experimentation on three real-world datasets, to evaluate the capability of popularity to increase the
number of effective recommendations, with respect to a state-of-the-art approach that does not employ
it.

In the rest of this paper, we first introduce the literature related with the proposed strategy (Section 2),
continuing to define the adopted notation and the problem definition (Section 3), the implementation
details of our proposal (Section 4). Finally, we complete the paper with the description of the performed
experiments (Section 5), ending with some concluding remarks and future work (Section 6).

2. Related Work

This section presents two concepts closely related with our work.

Non-personalized Models. The recommender systems based on the so-called non-personalized model
[11], propose to all users the same list of recommendations, without taking into account their preferences.
This static approach is usually based on two algorithms, the first of them (TopPop), operates by suggesting
the most rated items (i.e., those most popular), while the second (MovieAvg), works by suggesting the
highest rated items (i.e., those most liked). The exclusive use of the non-personalized models leads toward
the absence of two important characteristics that a recommender system should have, i.e.,, novelty and
serendipity [13]. Novelty occurs when a system is able to recommend unknown items that a user might
have autonomously found, while the serendipity happens when it helps the user to find a surprisingly
interesting item that a user might not have otherwise found, or if it is very hard to find.

Latent Factor Models. The type of data with which a recommendation system operates is typically a
sparse matrix where the rows represent the users, and the columns represent the items. The entries of this
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matrix are the interaction between users and items, in the form of ratings or purchases. The aim of a
recommender system is to infer, for each user u, a ranked list of items, and in literature many of them are
focused on the rating prediction problem. The most effective strategies in this field exploit the so-called
latent factor models, but especially, the matrix factorization techniques [7]. Other CF ranking-oriented
approaches that extend the matrix factorization techniques, have been recently proposed, and most of them
use a ranking oriented objective function, in order to learn the latent factors of users and items [14]. SVD++
[8], the Koren's version of the Singular Value Decomposition (SVD) [9], is today considered one of the best
strategies in terms of accuracy and scalability. In [16]-[18], the problem of modeling semantically
correlated items was tackled, but the authors consider a temporal correlation and not the one between the
items and a user profile.

3. Notation and Problem Definition

The mathematical notation used in this work, and the problem statement, are recalled in the following.

3.1. Notation

We are given a set of users U ={u,,...,u}, asetofitems| ={i,,...,1,, }, and a set V of values used to

express the user preferences (e.g., V=[1, 5] or V={like, dislike}). The set of all possible preferences expressed
by the users is a ternary relation PcUx|xV. We denote as P, c P the subset of preferences with a

positive value (ie, P, ={(u,i,v)e P|v >V vv=Ilike}), where V indicates the mean value (in the previous
example, V=3). Moreover, we denote as | ={iel |El(u,i,v) e P} the set of items for which there is a
positive preference, and as np,, = |(u, i,v)e P+| Jel,YueU the number of positive preferences
expressed by all users u for an item i. We also denote as 1, ={i e I|3(u,i,v)e PAueU} the set of items in
the profile of a user u, and as R,={u € UARCc |}, the set of items i recommended to a user u. The set of

items i without the items already evaluated by the user u (i.e., those in 1,) is denoted as I cl.

u =

3.2. Problem Definition
We consider the function f:Ux|—V, adopted to predict the ratings for the not evaluated items with

the SVD++ recommender system. Our aim is to define, for each item, a Domain Popularity Index DPI(i) that
represents the popularity of the item with respect to the others in the dataset (in terms of positive
evaluations given by the users to it). The Domain Popularity Index DPI of an item not evaluated by a user

will be employed to build a score . Our objective is to generate a list of recommended item i~ such that:

i" =argmax f(u, j)+a (1
iely
4. Integrating Popularity in the Recommendation Process: Algorithm
In this section, we present the steps made to generate the recommendations based on the proposed
Popularity-based SVD++ (PBSVD++) strategy, starting from the definition of the popularity index employed
by the approach, and ending with the implementation of our novel algorithm.
4.1. Items Popularity Definition

In this section, we introduce and formalize the popularity index employed of our approach. The value of

the Domain Popularity Index (DPI) for an item i€ |, with DPI €[0,1], np,, represents the number of

positive preferences expressed by all users U for the item i. It is calculated as shown in equation 2.
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. np,
DPI(i,U) _ P (2)
2.NPiy
jel
DPI is an important indicator, because it provides a global measure of the preferences expressed for an
item by all users.
4.2. PBSVD++ Algorithm

We exploit the DPI index previously presented, in order to modify the result of the SVD++ approach. The
index is employed in Algorithm 1, where we build a value «. Given a set of recommendations R, addressed

to a user ueU, the final rating p,, assigned to each item ie R, by our algorithm, is composed by the
rating,, calculated through the SVD++ approach, normalized in a continuous range from 0 to 1, and

denoted as STD(i,u), added to the & (also normalized in a continuous range from 0 to 1), built by employing

the DPI index, as shown in Equation 3. The final rating assigned to an item is then in the range from 0 to 2.

., = STD(i,u) +a

. 3
with STD(i,U)z% andazw )
> rating;, 2. DPI(j,U)
jeu jeu

The new rating p, ,, assigned to an item i for a user u takes into account, in a balanced way, its domain

popularity, and this produces a substantial change in the canonical SVD++ ranking during the
recommendation process, changing the performance of the recommender system. Algorithm 1 implements
the operations described above. It takes as input the training set s (used by the SVD++ approach, in step 3,
to build the latent factor model), the user u to whom address the recommendations, and the number n of

these.

Algorithm 1. PBSVD++

Input: s=Training set, u=User, n=Recommendations

Output: L = List of n recommendations
procedure GETPBSVDRECS(s,u,n)
x=GetNumOfNotEvaluatedltems(u)
I=GetSvdRecs(s,u,x)
t=0
foreachiin/do

if (SvdRating(i) + 1) > SvdRating(iy) then
R i
t+=GetDPI(i)

end if

. end for

. foreachrin R do

rating=(SvdRating(r)/SumAllSvdRatings(R))

o = GetDPI(r)/t

SetNewRating(r;,rating+a)

. end for

. L = GetRecsDescOrdered(R, n)

. Return L

. end procedure

O 0N W R

I S = Y
O NOUTAE WN RO

After the number x of potential items to recommend to the user u has been obtained (step 2), we
calculate through the standard SVD++ approach, for the user u, a set I of x recommendations based on the
training set s (step 3). In the steps from 5 to 10, we select from I only the elements i that are possible
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candidates for the recommendations based on the proposed approach. They are those items in which a
modification of the score, by adding to the original rating of SVD++ the value of a (parameter calculated
in the step 13, whose value is in the range from 0 to 1), could alter the rank proposed by SVD++. For this
reason, the candidates are only the items to which, adding at most 1, we get a value higher than that of the
item with the maximum SVD++ score (i.e., the first element i,). We use this process also to calculate (in

step 8) the sum of the DPI weight, related to all the items i € | . Starting with this set R of candidate items,
in the steps from 11 to 17, we alter the SVD++ score of each item i e |, following equation 3, after which
we return a list L of n recommendations, composed by the items with the highest scores.

5. Experiments

In this section, after the definition of the experimental environment and of the adopted datasets'
characteristics, we describe the strategy and metrics used, concluding with the presentation and discussion
of the experimental results.

5.1. Experimental Setup

The environment for this work is based on the Java language, with the support of the Apache Mahout
(https://mahout.apache.org) Java framework to implement the state-of-the-art approach that we compare
our novel approach with. In order to evaluate the proposed strategy, we perform a series of experiments on
three different real-world datasets, which represent a quite standard benchmark in the context of the
recommender  systems: the first  one is the dataset  Yahoo! Webscope R4
(http://webscope.sandbox.yahoo.com), which contains a large amount of data related to users preferences
expressed by the Yahoo! Movies community; the others two are extracted from the dataset Movielens 10M
(http://grouplens.org/datasets/movielens/), composed by the data collected over various periods of time,
on the MovieLens web site. The first set of experiments provides a general overview of the results obtained
by comparing the performance of a recommender system, where we have implemented the new PBSVD++
algorithm, with those of a canonical system based on the SVD++ algorithm. The second set of experiments
shows in more detail the results previously summarized, analyzing them through the precision and recall
metrics.

5.2. Datasets

In order to evaluate the proposed strategy, we perform a series of experiments on three different
real-world datasets, extracted by two quite standard benchmarks in the context of the recommender
systems: Yahoo! Webscope R4 and Movielens 10M.

Yahoo! Webscope (R4). This dataset contains a large amount of data related to users preferences
expressed on the Yahoo! Movies community that are rated on the base of two different scales, from 1 to 13
and from 1 to 5 (we use the latter). The training data is composed by 7,642 users, 11,915 movies/items,
and 211,231 ratings. All the users in the training set have rated at least 10 items and all items are rated by
at least one user. The test data is composed by 2,309 users, 2,380 items, and 10,136 ratings. There are no
test users/items that do not also appear in the training data. All the users in the test set have rated at least
one item and all items have been rated by at least one user. The items are classified in 20 different classes
(genres), and it should be noted that an item may be classified with multiple classes.

Movielens 10M. The second dataset used in this work is composed by 71,567 users, 10,681
movies/items, and 10,000,054 ratings. It was extracted at random from MovieLens (a movie
recommendation website). All the users in the dataset had rated at least 20 movies, and each user is
represented by a unique ID. The ratings of the items are based on a 5-star scale, with half-star increments.
In this dataset the items are classified in 18 different classes (movie genres), and also in this case each item
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may be classified with multiple classes (genres). Since the Movielens 10M dataset does not contain any
textual description of the items, to obtain this information we used a file provided by the Webscope (R4)
dataset, which contains a mapping from the movie IDs used in the dataset to the corresponding movie IDs
and titles used in the MovieLens dataset. Using the script provided with the Movielens 10M dataset, we split
up the whole dataset in two different datasets with exactly 10 ratings per user in the test set. Both training
sets are composed by 69,878 users, and 9,301,274 ratings, with 10,667 movies/items in the first one, and
10,676 movies/items in the second one. Each test dataset contains 69,878 users, and 698,780 ratings, with
3,326 movies/items in the first one, and 5,724 movies/items in the second one. From each of these
datasets, we take in account a subset of 20,000 users.

5.3. Strategy

We compare the proposed recommendation strategy with the state-of-the-art approach SVD++. The
Mahout framework, used to implement it, in addition to the training set requires two additional
parameters: the number of target features and the number of training steps to run. The first parameter
would be equivalent to the number of involved genres, thus we have set this value to 20 for the Yahoo
dataset, and to 18 for the Movielens datasets. Regarding the second parameter, we use the value 15, as
indicated in the SVD++ reference paper [8].

5.4. Metrics

Here, we present the metrics used during the experiments.

Precision and Recall. The performance measures adopted to evaluate our approach, comparing the set
of recommendations generated by our strategy and the set of those generate by the canonical approach of
recommendation with the real user preferences stored in the test set, are the precision and the recall, and
metrics [15]. Given two sets X, and Z,, where X, denotes the set of recommendations performed for a user
u, and Z, the set of the real choices of the user u in the test set, these metrics are defined as shown in

Equation 4.
precision(X,,Z,) :%
u (4)
recall(X,,Z,) = M
2|

Metrics Evaluation. In order to compare the results of the two approaches of recommendation (i.e., our
approach based on the PBSVD++ algorithm, and the canonical none, based on SVD++), we calculate the
previous metrics, presented in Equation 4, for each group of n performed recommendations (denoted as
@n, with n={2, 4,..., 20}), subtracting from the values obtained by our approach those obtained by SVD++.

In this way, a positive value denotes that our approach improves the standard one, while a negative value
denotes that our approach worsens the standard one. Denoting as X, the set of n recommendations
generated by our strategy, as Y, the set of n recommendations generated by the canonical SVD++ strategy,
and as Z, the set of n real user preferences stored in the test set, we define the measures shown in Equation
5.

p — variation @ n = precision@n(X,,Z,) —precision@n(Y,,Z,)

5
r—variation@n=recall@n(X,,,Z,)—recall@n(Y,,Z,) ©)

5.5. Experimental Results
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Here, we report the results of the experiments presented in Section 5.1.

Performance Overview and Details. The result presented in Fig. 1 shows the general performance of
the proposed strategy, in the context of the three considered real-world datasets. It indicates the
percentage of times in which we have done better, or have done worse than SVD++ (respectively, B and W).
The overall results show the good performance of our approach with all three datasets.

=1
30| Haw |

Percentage

2. -

Yahoo Miens 1 Mlens2
Datasets

Fig. 1. Results overview.

In the second set of experiments we compare the performance of a recommender system where we have
implemented the PBSVD++ algorithm, with those of the canonic recommender system based on the SVD++
algorithm. We evaluate the results in terms of p-variation@n and r-variation@n, as described in Section 5.4.
As we can observe in the graphs in Fig. 2, the results are quite similar for all the three considered datasets,
apart in the recall@n measure, which reports a difference between the Yahoo and Movielens results. This
happens because the script provided by Movielens places a fixed number of ratings per user in the test set
(10). This does not happen in the Yahoo dataset, which builds a test set with a variable number of items for
each user. Since the recall@n metric has as denominator the number of items in the test set, this number is
fixed for the Movielens dataset (hence, the results are more “flat”), and variable for the Yahoo dataset (this
leads to the variable results in Fig. 2(b)).

The overall results, presented in Fig. 2, show that our strategy outperforms the canonical one, using all
metrics, except when we test the maximum number of recommendations (i.e., 20). This is an obvious
aspect, since the algorithm PBSVD++ operates in the domain of the SVD++ recommendations, recalculating
their ratings: therefore, when we consider the entire domain, the results of SVD++, and PBSVD++, will
always be identical.
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Fig. 2. Experimental results.

Discussion. The performed experiments, presented in Section 5, prove that our strategy, based on the
novel PBSVD++ algorithm, is able to improve the results of a canonical recommender system based on the
SVD++ algorithm. As we can observe, this happens with any number of recommendations, except the case
in which the maximum number of these is generated, for the obvious reason explained in the previous
section. When evaluating these results, we can observe that the maximum value of positive variation for a
metric is 1 (which represents a 100% improvement w.r.t. SVD++). Therefore, our results suggest important
improvements, thinking that the Netflix prize was based on a 10% improvement in terms of accuracy. This
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proves that is possible to improve a state-of-the-art approach such as SVD++, by using its output as an input
domain, in order to perform a fine-tuning based on the popularity of the involved items.

6. Conclusions and Future Work

In this paper we proposed a novel form of recommendation, which integrated the information about item
popularity into a state-of-the-art approach. The performed experiments have shown both the validity of the
adopted index, and its ability to improve the performance of the SVD++ approach. In future work, we will
extend our approach, by adding new metrics able to evaluate the item popularity, in the context of systems
that operate within more than one domain of goods/services, trying to parameterize both the popularity
aspect of each item, and their interconnections between different operative domains. We will also study the
introduction of others metrics of popularity, e.g., based on the geographic or demographic information.
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