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Abstract— Any business that carries out activities on the Internet
and accepts payments through debit or credit cards, also implicitly
accepts all the risks related to them, like for some transaction to
be fraudulent. Although these risks can lead to significant economic
losses, nearly all the companies continue to use these powerful instru-
ments of payment, as the benefits derived from them will outweigh
the potential risks involved. The design of effective strategies able to
face this problem is however particularly challenging, due to several
factors, such as the heterogeneity and the non stationary distribution
of the data stream, as well as the presence of an imbalanced class
distribution. To complicate the problem, there is the scarcity of public
datasets for confidentiality issues, which does not allow researchers
to verify the new strategies in many data contexts. Differently from
almost all strategies at the state of the art, instead of producing a
unique model based on the past transactions of the users, in this paper
we present an approach that generates a set of models (behavioral
patterns) that allow us to evaluate a new transaction, by considering
the behavior of the user in different temporal frames of her/his history.
The size of the temporal frames and the number of levels (granularity)
used to discretize the values in the behavioral patterns, can be
adjusted in order to adapt the system sensitivity to the operating
environment. Considering that our models do not need to be trained
with both the past legitimate and fraudulent transactions of a user,
since they use only the legitimate ones, we can operate in a proactive
manner, by detecting fraudulent transactions that have never occurred
in the past. Such a way to proceed also overcomes the data imbalance
problem that afflicts the machine learning approaches at the state of
the art. The evaluation of the proposed approach is performed by
comparing it with one of the most performant approaches at the state
of the art as Random Forests, using a real-world credit card dataset.

Index Terms—Fraud detection, Pattern Mining, Rule learning.

I. INTRODUCTION

The exponential and rapid growth of the electronic com-
merce (E-commerce) based both on the new opportunities
offer by the Internet, and on the spread of the use of debit
or credit cards in the online purchases, has strongly increased
the number of frauds, causing large economic losses to the
involved businesses. Fraud is one of the major issues related
with the use of debit and credit cards, considering that these
instruments of payment are becoming the most popular way
to conclude every financial transaction, both online and in
a traditional way. According to a study of some years ago
conduct by the American Association of Fraud Examiners1,

1http://www.acfe.com

fraud related with the financial operations are the 10-15% of
the whole fraud cases. However, this type of fraud is related to
the 75-80% of all involved finances with an estimated average
loss per fraud case of 2 million of dollars, in the USA alone.
The research of efficient ways to face this problem has become
an increasingly crucial imperative in order to eliminate, or at
least minimize, the related economic losses.

Open Issues. Considering that the number of fraudulent
transactions is typically much smaller than legitimate ones,
the distribution of data is highly unbalanced, reducing the
effectiveness of many learning strategies used in this field [1].
The problem of the unbalanced data distribution is further
complicated by the scarcity of information in a typical record
of a financial transaction, which generates an overlapping
of the classes of expense of a user [2]. A fraud detection
system can basically operate following two different learning
strategies: static and dynamic [3]. Through the static strategies,
the model used to detect the frauds is completely generated
after a certain time period, while in the dynamic strategies it
is generated one time, then updated after a new transaction.
There are several kind of approaches that are used in this
context, such as those based on Data Mining [4], Artificial
Intelligence [5], Fuzzy Logic [6], Machine Learning [7], or
Genetic Programming [8]. The strategy used in many of the
cited approaches is based on the detection of the suspicious
changes in the user behavior, a quite trivial approach that in
several cases leads toward false alarms. Most of these false
alarms are related to the absence of extended criteria during
the evaluation of the suspect activities, since numerous state-
of-the-art approaches exclude some non numeric data from the
evaluation process, due to their incapacity to manage it. This
happens because employing machine learning approaches,
such as the Random Forests, all the types of data that involve
a lot of categories (typically 32) cannot be handled. Thinking
about real-world transactional data, they usually involve much
more than 32 categories (e.g., the places in the transactions).

Our Contribution. The vision behind this paper is to
extend the canonical criteria, integrating them the ability to
operate with heterogeneous information (i.e., numeric and non
numeric data), and by adopting multiple behavioral patterns
of the users. This approach reduces the problems previously
underlined, related with the scarcity, heterogeneity, non sta-
tionary distribution, and presence of an imbalanced class dis-



tribution, of the transactions data. This is possible because we
take into account all parts of a transaction, considering more
information about it, contrasting the scarcity of information
that leads toward an overlapping of the classes of expense. By
means of the generation of multiple behavioral models of a
user, made by dividing the sequence of transactions in several
time-frame, we face instead the problem of the non stationarity
of data, modeling anyway the user behavior effectively.

The block diagram in Fig. 1 introduces the proposed ap-
proach step by step. As we can observe, the past transac-
tions of a user are processed in order to define a series
of behavioral models that characterize different parts of the
transaction history of the user. Such process takes into account
the importance of certain transaction elements in the fraud
detection process, such as, for instance, the place where
the transaction happens. The first block in Fig. 1, labeled
Transactions Set, contains the initial set of transactions (past
transactions of a user) to process in order to define a set
of behavioral patterns. Its output depends on the presence
of a new transaction te to evaluate in the input channel: in
absence of it, we have as output all transactions; otherwise
we have only the t f − 1 transactions (where t f denotes the
size of time-frame), followed by the te transaction to evaluate.
This happens because in this case we need as output only a
single behavioral pattern of t f size. As input of the second
block (Calculate Variations), we have a set of transactions
T , composed by the output of the previous block, after the
removal of field (in our case, the field place) designed as
Transaction Field Keywords (TFK), the part of a transaction
to which we have decided to give more relevance during the
fraud detection process, in accord with the operations of the
block TFK Process, described in Section IV-B. The set of
transactions T is processed by the block Calculate Variations,
in order to convert it into absolute numeric variations measured
between each pair of contiguous transactions, as described
in Section IV-A. The absolute variations in the set T̂ are
processed in the Convolution Operations block, in accord with
the value in the input channel t f , that defines the size of
the Time-frame Convolution Vector (TFCV), as described in
Section IV-C. The result is a set I of behavioral patterns.
The next Discretization Process block converts the continuous
values present in the set I, in output to the previous block,
in discrete values, according with the value of granularity
defined in the input channel g, as described in Section IV-D.
The final set of Behavioral Patterns P, in the output of the
entire process, is built by integrating the output of the block
Discretization Process block, with the T FK information of
the block TFK Process. The level of reliability of a new
transaction is evaluated by comparing, through the cosine
similarity the behavioral pattern P obtained by performing
the entire process with the transaction to evaluate applied to
input channel te, with the set of behavioral patterns generated
following the same process without any transaction applied in
this channel, as described in Section IV-E.

Differently from the canonical machine learning approaches
at the state of the art (e.g., the Random Forests approach to
which we compared in this work), our models do not need
to be trained with the fraudulent transactions, because their
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definition need only the legitimate ones. This overcomes the
problem of data imbalance that afflicts the machine learning
approaches. The level of reliability of a new transaction is
evaluated by comparing (through the cosine similarity mea-
sure) its behavioral pattern to each of the behavioral patterns
of the user, generated at the end of the previously described
process. This work provides the following main contributions
to the current state of the art:
• introduction of a strategy able to manage heterogeneous

parts of a financial transaction (i.e., numeric and non
numeric), converting them in absolute numeric variations
between each pair of contiguous events;

• definition of the Transaction Field Keywords (TFK) set,
a series of distinct values extracted from a field of the
transaction, and used to give more importance to certain
elements of a transaction, during the fraud detection
process;

• introduction of the Time-frame Convolution Vector
(TFCV) operations, made by sliding a vector of size
t f (time-frame) over the sequence of absolute variations
previously calculated, in order to store, in the behavioral
patterns of a user, the average values of the variations
measured in each time-frame;

• definition of a discretization process used to adjust the
sensitivity of the system in the fraud detection process,
by converting the continuous values in the behavioral
patterns in output to the TFCV process, in a number of
g levels (granularity);

• formalization of the process of evaluation of a new
transaction, performed by comparing, through the cosine
similarity, its behavioral pattern with the user behavioral
patterns in P, in order to assign it a certain level of
reliability.

The paper is organized as follows: Section II provides a back-
ground on the concepts handled by our proposal; Section III
provides a formal notation and definition of the problem
faced in this work; Section IV introduces the proposed model,
presents the block diagram of a fraud detection system based
on our strategy, and provides all the details about its imple-
mentation; Section V describes the experimental environment,



the adopted metrics, and the experimental results; the last
Section VI reports some concluding remarks and future work.

II. RELATED WORK

As highlighted in many studies, frauds represent the biggest
problem in the E-commerce environment. The credit card
fraud detection represents one of the most important context,
where the challenge is the detection of a potential fraud
in a transaction, through the analysis of its features (i.e.,
description, date, amount, an so on), exploiting a user model
built on the basis of the past transactions of the user. In [8],
the authors show how in the field of automatic fraud detection
there is lack of real datasets (publicly available) indispensable
to conduct experiments, as well as a lack of publications about
the related methods and techniques.

The most common causes of this problem are the policies
(for instance, competitive and legal) that usually stand behind
every E-commerce activity, which makes it very difficult to
obtain real data from business. Furthermore, such datasets
composed by real information about user transactions could
also reveal the potential vulnerabilities in the related E-
commerce infrastructure, with a subsequent loss of trust.

Supervised and Unsupervised Approaches. In [9] it is
underlined how the unsupervised fraud detection strategies are
still a very big challenge in the field of E-commerce. Bolton
and Hand [10] show how it is possible to face the problem
with strategies based both on statistics and on Artificial
Intelligence (AI), two effective approaches in this field able
to exploit powerful instruments (such as the Artificial Neural
Networks) in order to get their results. In spite the fact that
every supervised strategy in fraud detection needs a reliable
training set, the work proposed in [10] takes in consideration
the possibility to adopt an unsupervised approach during
the fraud detection process, when no dataset of reference
containing an adequate number of transactions (legitimate and
non-legitimate) is available. Another approach based on two
data mining strategies (Random Forests and Support Vector
Machines) is introduced in [11], where the effectiveness of
these methods in the field of the fraud detection is discussed.

Data Unbalance. As previously underlined, the unbalance
of the transaction data represents one of the most relevant is-
sues in this context, since almost all of the learning approaches
are not able to operate with this kind of data structure [12], i.e.,
when an excessive difference between the instances of each
class of data exists. To face this problem, several techniques of
pre-processing have been developed, aimed to balance the set
of data [1]. The undersampling technique randomly removes
the transactions, until the balancing has been reached, while
the specular oversampling technique, obtains the balancing by
additioning new transactions, created through an interpolation
of the elements that belong to a same class [13].

Detection Models. The static approach [3] represents a
canonical way to operate to detect fraudulent events in a stream
of transactions. It is based on the initial building of a user
model, which is used for a long period of time, before its
rebuilding. An approach characterized by a simple learning
phase, but not able to follow the changes of user behavior
during the time.

In a static approach, the data stream is divided into blocks of
the same size, and the user model is trained by using a certain
number of initial and contiguous blocks of the sequence, which
use to infer the future blocks.

In the so-called updating approach [14], instead, when a
new block appears, the user model is trained by using a certain
number of latest and contiguous blocks of the sequence, then
the model can be used to infer the future blocks, or aggregated
into a big model composed by several models.

In another strategy, based on the so-called forgeting ap-
proach [15], a user model is defined at each new block, by
using a small number of non fraudulent transactions, extracted
from the last two blocks, but keeping all previous fraudulent
ones. Also in this case, the model can be used to infer the
future blocks, or aggregated into a big model composed by
several models.

The main disadvantages related of these approaches of user
modeling are: the incapacity to follow the changes in the users
behavior, in the case of the static approach; the ineffectiveness
to operate in the context of small classes, in the case of the
updating approach; the computational complexity in the case
of the forgetting approach. However, regardless of the used
approach, the problem of the non stationary distribution of
the data, as well as that of the unbalanced classes distribution,
remain still unaltered.

Differences with our approach. The proposed approach
introduces a novel strategy that, firstly, takes in account all
elements of a transaction (i.e., numeric and non numeric),
reducing the problem related with the lack of information,
which leads toward an overlapping of the classes of expense.
The introduction of the Transaction Field Keywords (TFK) set,
also allows to give more importance to certain elements of the
transaction, during the model building. Secondly, differently
from the canonical approaches at the state of the art, our
approach is not based on an unique model, but instead on
multiple user models that involve the entire set of data. This
allows us to evaluate a new transaction by comparing it with
a series of behaviors captured in many temporal frames of the
user transaction history. The main advantage of this strategy
is the reduction, or removal, of the issues related with the
stationary distribution of the data, and the unbalancing of the
classes. This because the operative domain is represented by
the limited temporal frames, and not by the entire dataset.
The discretization of the models, according to a certain value
of granularity, permit us to adjust their sensitivity to the
peculiarities of the operating environment. In more details,
regarding the analysis of the textual information related to the
transactions, the literature presents several ways to operate,
and most of them work in accord with the bag-of-words
model, an approach where the words (for instance, type and
description of the transaction) are processed without taking
into account of the correlation between terms [16], [17].
This trivial way to manage the information does usually not
lead toward good results, and just for this reason the basic
approaches are usually flanked by complementary techniques
aimed to improve their effectiveness [18], [19], or they are re-
placed by more sophisticated alternative based on the semantic
analysis of the text [20], which proved to be effective in many



contexts, such as the recommendation one [21]. Considering
the nature of the textual data related to a financial transaction,
the adoption of semantic techniques could lead toward false
alarms, as well as a trivial technique based on simple matching
between words. This happen because, a conceptual extension
of a the textual field of a transaction could evaluate as
similar two transactions instead very different, while a simple
matching technique could lead to consider as different some
string of text, due to the existence of some slight differences
(i.e., plural forms instead of singular, words different but with
a common root, and so on). For this reason, in this work
we adopt the Levenshtein Distance, a metric that measure
the similarity between two textual fields in terms of minimal
number of insertions, deletions, and replacements, needed to
transforming the content of the first field into the content of
the second one.

III. PROBLEM DEFINITION

This section defines the problem faced by our approach,
preceded by a set of definitions aimed to introduce its notation.

Definition 3.1 (Input sets): Given a set of users U =
{u1,u2, . . . ,uM}, a set of transactions T = {t1, t2, . . . , tN}, a set
of absolute variations T̂ = {v1 = |t2−t1|,v2 = |t3−t2|, . . . ,vN =
|tN − tN−1|}, where |T̂ | = (|T | − 1), and a set of fields F =
{ f1, f2, . . . , fX} that compose each transaction t (we denoted
as k1,k2, . . . ,kW , the values that each field f can assume),
we denote as T+ ⊆ T the subset of legal transactions, and
as T− ⊆ T the subset of fraudulent transactions. We assume
that the transactions in the set T are chronologically ordered
(i.e., tn occurs before tn+1).

Definition 3.2 (Output sets): We denote as I = {i1, i2, . . . , iZ}
the set of behavioral patterns generated at the end of the convo-
lution process performed on the set T̂ (before the discretization
process of the values in the set F), and as P = {p1, p2, . . . , pY}
the same set after the discretization process in g levels (with
g≥ 2) of the continuous values in the set F . It should be noted
that |I|= |P|.

Definition 3.3 (Fraud detection): The main objective of a
fraud detection system is the isolation and ranking of the
potentially fraudulent transactions [22] (i.e., by assigning an
high rank to the potential fraudulent transactions), since in
the real-world applications, this allows a service provider to
focus the investigative efforts toward a small set of suspect
transactions, maximizing the effectiveness of the action, and
minimizing the cost. In [22], the average precision (here
denoted as α) is considered as the correct measure to use in
this kind of process. Its formalization is shown in Equation 1,
where N is the number of transactions in the set of data,
and ∆R(tr) = R(tr)−R(tr− 1). Denoting as π the number of
fraudulent transactions in the set of data, out of the percent
t of top-ranked candidates, denoting as h(t) ≤ t the hits
(i.e., the truly relevant transactions), we can calculate the
recall(t) = h(t)/π, and precision(t) = h(t)/t values, then the
value of α.

α =
N
∑

r=1
P(tr)∆R(tr) (1)

Lemma 1: The values R(tr) and P(tr) represent, respectively,
the recall and precision of the rth transaction, then we have
∆R(tr) = (1/π) when the rth transaction is fraudulent, and
∆R(tr) = 0 otherwise.

Corollary 1: When the set processed by the Equation 1 is a
set composed by a certain number of legitimate transactions,
but with only one potential fraudulent transaction to evaluate
t̂ (i.e., T+ ∪ t̂), according to the Definition 3.3 we have π =
1 and t = 1. Consequently, from the previous Lemma 1, we
can define a binary classification of the transaction t̂, since
∆R(tr) = 1 when the rth transaction is fraudulent, and ∆R(tr) =
0 otherwise, which allow us to mark a new transaction as
reliable or unreliable.

Problem 1: An ideal fraud detection approach should have
a value of α as close as possible to 1, since it means that
all fraudulent transactions π have been ranked ahead the legal
ones. Our objective is then to maximize the α value, in order
to reduce the false alarms, improving the effectiveness in the
fraud attempts detection, as shown in Equation 2.

max
0≤α≤1

α =
N
∑

r=1
P(tr)∆R(tr) (2)

IV. OUR APPROACH

The steps needed to implement our strategy, schematically
shown in the block diagram in the Introduction (Fig. 1), can
be grouped into the following five steps:
• Absolute Variation Calculation: conversion of the trans-

actions set T of a user into a set of absolute numeric
variations between two contiguous transactions t ∈ T ,
adopting a specific criterion for each type of data in the
set F ;

• TFK Definition: creation of a Transaction Field Key-
words (TFK) set, a series of distinct k terms, extracted
from the field place, used to define a binary element in
each pattern of the set P, allowing to give more relevance
to this field during the fraud detection process;

• TFCV Operation: application of a Time-frame Convo-
lution Vector (TFCV) over the set of absolute numeric
variations T̂ , aimed to calculate the average value of
the elements within the time-frame t f , which stores the
results as patterns of the set I;

• Discretization Process: discretization of the average
values in the set I, in accord with a defined number of
levels g (granularity). It allows to adjust the sensitivity of
the system during the fraud detection process. The result
of this operation, along with the result of the TFK query,
defines the set of behavioral patterns P;

• Transaction Evaluation: assignation of a level of reli-
ability to a new transaction, by comparing all patterns
in the set P with the pattern obtained by inserting the
transaction to evaluate as last element of the set T ,
repeating the entire process previously described only for
the last t f transactions.

A. Absolute Variations Calculation

In order to convert the set of transactions T in the set of
absolute variations T̂ , according with the criterion exposed in



Section III, we need to define a different kind of operation for
each different type of data in the set F (excluding the field
place, used in the Transactions Field Keywords). In our case,
in accord with the adopted dataset (described in Section V-B),
we need to define three type of operations: numeric absolute
variation, temporal absolute variation, and textual absolute
variation.

Numeric Absolute Variation. Given a numeric field fx ∈ F
of a transaction tn ∈ T (i.e., in our case the field amount),
we calculate the Numeric Absolute Variation (NAV) between
each pair of fields, that belong to two contiguous transactions
(denoted as f (tn)x and f (tn−1)

x ), as shown in Equation (3). The
result is the absolute difference in Euros (since it is the
currency used in the dataset), between the two amounts taken
in account.

NAV = | f (tn)x − f (tn−1)
x | (3)

Temporal Absolute Variation. Given a temporal field fx ∈
F of a transaction tn ∈ T (i.e., in our case the field date),
we calculate the Temporal Absolute Variation (TAV) between
each pair of fields, that belong to two contiguous transactions
(denoted as f (tn)x and f (tn−1)

x ), as shown in Equation 4). The
result is the absolute difference in days, between the two dates
taken in account.

TAV = |days( f (tn)x − f (tn−1)
x )| (4)

Descriptive Absolute Variation. Given a textual field
fx ∈ F of a transaction tn ∈ T (i.e., in our case the description
field), we calculate the Descriptive Absolute Variation (DAV)
between each pair of fields, that belong to two contiguous
transactions (denoted as f (tn)x and f (tn−1)

x ), by using the Leven-
shtein Distance metric described in Section V-D2, as shown in
Equation 5). The result is a value in the range from 0 (complete
dissimilarity) to 1 (complete similarity).

DAV = lev
f (tn)x , f

(tn−1)
x

(5)

B. TFK Definition

In order to define the Transaction Field Keywords (TFK)
from a field that we decide to consider as crucial in the fraud
detection process (in our case, the field place), we select from
the set of transactions all distinct values of this field, then we
store them in a vector K = {k1,k2, . . . ,kW}6=, according with
the formalization introduced in Section III. The vector K will
be queried in order to check if the place of the transaction
under analysis is a place already used by the user, or not.
When it is true, the binary value of the corresponding element
of the behavioral pattern (i.e., the field place of the behavioral
pattern of the transaction to evaluate, defined as described in
Section ??) is set to 1, otherwise to 0. It should be noted that
this value is always set to 1 in the behavioral patterns related
with the past transactions of the user.

C. TFCV Operation

The convolution is a mathematical operation between two
functions f and g, which produces a third function that repre-
sents a modified version of one of the original functions. In our
context, after we have converted the set of transaction T into
a set of absolute variations T̂ , adopting the criteria exposed in
Section IV-A, we operate a convolution operation by sliding
the Time-frame Convolution Vector over the sequence of abso-
lute variation values stored in T̂ , one step at a time, extracting
the average value of the variations present in the defined
time-frame t f . Given a time-frame t f = 3, a set of variations
T̂ = {v1,v2,v3,v4,v5,v6}, we can execute a maximum of |C|
convolution operations, with |C| = |I| = (|T̂ | − |t f | − 1), as
shown in the Equation 6.

T̂ = [v1,v2,v3,v4,v5,v6]

⇓
c1 =

v1+v2+v3
|t f | ,c2 =

v2+v3+v4
|t f |

c3 =
v3+v4+v5
|t f | ,c4 =

v4+v5+v6
|t f |

⇓
I = [c1,c2,c3,c4]

(6)

The sequence of values calculated in each time-frame t f ,
for each considered field (i.e., description, amount, and date),
represents the set I of behavioral patterns of the user. It should
be observed that we have to discretize the patterns obtained
through the convolution process, adding to them the binary
value determined by querying the Transaction Field Keywords
in K (as described in Section IV-B), before using them in the
evaluation process of a new transaction.

D. Discretization process

The continuous values vc present in the patterns set I,
obtained through the convolution operation described in Sec-
tion IV-C), must be transformed in discrete values vd , in accord
with a certain level of granularity g. It allow us to determine
the level of sensitivity of the system during the fraud detection
process. The result is a set P = {p1, p2, . . . , pY} of patterns
that represent the behaviour of a user in different parts of
her/his transaction history. Given a granularity g = 10, and a
set of patterns I, each continuous value vc of a field f (i.e., we
process only the fields description, date, and amount, because
the field place assumes a binary value determined by the TFK
process) is transformed in a discrete value vd , following the
process shown in the Equation 7.⌈

vd =
vc(

max( f )−min( f )
g

)⌉ (7)

E. Transaction Evaluation

To evaluate a new transaction, we need to compare each
behavioral pattern p ∈ P with the single behavioral pattern p̂
obtained by inserting the transaction to evaluate as last element
of the set T , repeating the entire process previously described



(variation calculation, convolution, and discretization) only for
the transactions present in the last time-frame (i.e., the time-
frame composed by the last |time− f rame| transactions of
the set T , were the last one element is the transaction to
evaluate). The comparison is performed by using the cosine
similarity metric (described in Section V-D1), and the result is
a series of values in the range from 0 (transaction completely
unreliable) to 1 (transaction completely reliable). It should be
noted that the value of the field place depends on the result
of the query operated on the TFK set, as described in the
Section IV-B. The value of similarity is the average of the
sum of the minimum and maximum values of cosine similarity
cos(θ), measured between the pattern p̂ and all patterns of the
set P, i.e., sim(p̂,P) = (min(cos(θ)) + max(cos(θ)))/2. The
result is used to rank the new transactions, on the basis of
their potential reliability.

V. EXPERIMENTS

This section describes the experimental environment, the
adopted dataset and strategy, as well as the involved metrics,
the parameters tuning process, and the results of the performed
experiments.

A. Experimental Setup

In order to evaluate the proposed strategy, we perform a
series of experiments using a real-world dataset related to one-
year (i.e., 2014) of credit card transactions2. The proposed
TFVC approach was developed in Java, while the imple-
mentation of the state-of-the-art approach, used to evaluate
its performance, was made in the R3 environment, using the
randomForest package.

B. Dataset

The dataset used for the training, in order to generate the
set of behavioral patterns P, contains one year of data related
to the credit card transaction of a user. It is composed by
204 transactions, operated from January 2014 to December
2014, with amounts in the range from 1.00 to 591.38 Euro,
55 different descriptions of expense, and 7 places of operation
(when the transaction is operated online, the place reported is
Internet). Considering that all transactions in the dataset are
legal, we have T+ = 204 and T− = 0. As shown in Table I,
the fields that compose a transaction are 5, but in this work
we do not take in account the Transaction ID field (TID), nor
any metadata (e.g., mean value of expenditure per week or
month).

C. Strategy

Considering that it has been proved [3] that the Random
Forests (RF) approach outperforms the other approaches at the
state of the art, in this work we chose to compare our TFVC
approach only to this one, excluding alternative approaches,
such as Support Vector Machine (SVM), or Neural Network

2A private dataset provided by a researcher
3https://www.r-project.org/

NR Field Explanation Type

1 TID Transaction ID Numeric
2 Description Type of transaction Textual
3 Place City of transaction Textual
4 Date Date of transaction Date
5 Amount Amount in Euro Currency

TABLE I: Transaction Fields

(NNET). For the reason described in Section III, we perform
this operation by comparing their performance in terms of
Average Precision (AP). Since we do not have any real-world
fraudulent transactions to use, we first define a synthetic set
of data T−, composed by 10 transactions aimed to simulate
several kind of anomalies, as shown in Table II (they have
been marked as unreliable, as well as the other ones have
been marked as reliable).

During the experiments aimed to compare the performance
of our TFCV approach, with those of the RF one, we adopt
the k-fold cross-validation criterion. Regarding the TFCV
approach, we first partitioned the entire dataset T+ into k equal
sized subsets (according with the dataset size, we set k = 3),
which denote as T (k)

+ . Thus, each single subset T (k)
+ is retained

as the validation data for testing the model, after adding to
it the set of fraudulent transactions T− (i.e., T (k)

+ ∪T−). The
remaining k−1 subsets are merged and used as training data
to define the user models. We repeat the same previous steps
for the RF approach, with the difference that, in this case,
we add the set T− also to training data. In both cases, we
consider as final result the average precision (AP) related
to all k experiments. Since the RF approach is not able
to operate a textual analysis on the transaction description,
and that is well-known that the RF approaches are biased
by the categorical variables that generate many levels (such
as the Description field), we do not use this field in the
RF implementation. In addition, in order to work with the
same type of data, in the RF implementation we converted
the information of the field Date, in time intervals between
transactions, expressed in days. For reasons of reproducibility
of the RF experiments, we fix the seed value of the random
number generator by the method set.seed(123) (the value is
not relevant). The RF parameters (e.g., the number of trees to
grow) have been defined in experimental way, by researching
those that minimized the error rate given as output during the
RF process. The experiments are articulated in the following
two steps:
• definition of the values to assign to the parameters that

determine the performance of the FTCV approach (i.e.,
time-frame and granularity), as described in Section V-E;

• evaluation of the TFCV performance, comparing to the
RF approach, by testing the ability to detect a number of
2,4, . . . ,10 fraudulent transactions (respectively, a fraud-
ulent transactions percentage of 2.8%,5.5%, . . . ,12.8%).

D. Metrics

In this section, we present the metric used during the
experiments.



TransactionID Fields Values (1=anomalous 0=regular)
From To Description Place Date Amount Status

1 2 1 0 0 0 unreliable
3 4 0 1 0 0 unreliable
5 6 0 0 1 0 unreliable
7 8 0 0 0 1 unreliable
9 10 1 1 1 1 unreliable

TABLE II: Fraudulent Transactions Set

1) Cosine Similarity: In order to evaluate the similarity
between the behavioral pattern of a transaction under analysis,
and each of the behavioral patterns of the user, generated at the
end of the process exposed in Section ??, we use the cosine
similarity metric. It allows to measure the similarity between
two vectors (i.e., the behavioral patterns) of an inner product
space that measures the cosine of the angle between them.
Considering that the cosine of 0◦ is 1, and it is less than 1 for
any other angle, in two vectors with the same orientation we
measure a cosine similarity of 1. The output of this measure is
then bounded in [0,1], with 0 that means complete diversity,
and 1 complete similarity. Given two vectors of attributes x
and y, the cosine similarity, cos(θ), is represented using a dot
product and magnitude as shown in Equation 8.

similarity = cos(θ) = x·y
‖x‖‖y‖ =

n
∑

i=1
xi×yi√

n
∑

i=1
(xi)2×

√
n
∑

i=1
(yi)2

(8)

2) Levenshtein Distance : The Levenshtein Distance is a
metric able to measure the difference between two sequences
of terms. Given two strings a and b, it indicates the minimal
number of insertions, deletions, and replacements, needed to
transforming the string a into the string b. Denoting as |a| and
|b| the length of the strings a and b, the Levenshtein Distance
is given by leva,b(|a|, |b|), as shown in Equation 9.

leva,b(i, j) =


max(i, j) ifmin(i, j) = 0

min


leva,b(i−1, j)+1
leva,b(i, j−1)+1 otherwise
leva,b(i−1, j−1)+1(ai 6=b j)

(9)

Where 1(ai 6=b j) is the indicator function equal to 0 when
ai = b j and equal to 1 otherwise. It should be noted that the
first element in the minimum corresponds to deletion (from
a to b), the second to insertion and the third to match or
mismatch, depending on whether the respective symbols are
the same.

E. Parameter Tuning

Considering that the performance of our approach depends
on the parameters t f (time-frame) and g (granularity), before
evaluating its performance, we need to detect their optimal
values. To perform this operation we test all pairs of possible
values of t f and g, in a range from 2 to 99 (to be meaningful,
both values must be greater than 1). The criterion applied to
choose the best values is the average precision AP, as described
in Section III. The experiments detected t f = 46 as best value
of time-frame, and g = 11 as best value of granularity (i.e.,
the best performance measured in all subsets involved in the
k-fold cross-validation process).
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Fig. 2: Experiment Results

F. Experimental Results

As introduced in the Sections V-A and V-C, we test our
TFCV strategy by using a real-world dataset T related to
one-year of credit card transactions, where we have added
10 fraudulent transactions, the nature of which is defined in
Table II. We adopt the k-fold cross-validation criterion, with
k = 3, during all experiments, as specified in Sections V-C. The
TFCV process generates a set of user behavioral patterns P,
which we compare (i.e., using the cosine similarity metric)
to the behavioral pattern related to each transaction in the
subset of test, in order to retrieve a level of reliability for each
of them, following the process described in Sections IV-E.
The final result is given by the mean value of the results of
all experiments performed, in accord with the k-fold cross-
validation criterion. As we can observe in Fig. 2, our TFCV
approach obtained values very close to the RF one, and this
without train its models with the past fraudulent transactions
(as occurs in RF). This result shows an important aspect, as it
means that TFCV approach is able to operate in a proactive
manner, by detecting fraudulent transactions that have never
occurred in the past.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a novel approach able to reduce or
eliminate the threats connected with the frauds operated in the
electronic financial transactions. Differently from almost all
strategies at the state of the art, instead of exploiting a unique
model defined on the basis of the past transactions of the
users, we adopt multiple models (behavioral patterns), in order
to consider, during the evaluation of a new transaction, the
user behavioral in different temporal frames of her/his history.
The possibility to adjust the levels of granularity and the size
of the temporal frames, give us the opportunity to adapt the
detection process to the operating environment characteristics.
The most important aspect to consider is however tied to
the fact that, in our approach, the building of the behavioral
models does not need examples of past fraudulent transactions,
but is performed exclusively by exploiting the legitimate cases.
This allow us to operate in a proactive manner, by detecting
fraudulent transactions that have never occurred in the past,
allowing also to overcome the problem of data imbalance,
which afflicts the canonical machine learning approaches.
The experimental results show that the performance of the
proposed Time Frame Convolution Vector approach are very
close to those of the Random Forests (i.e., the state-of-the-art
approach, to which we compared), and this without training
our models with the past fraudulent transactions (as occurs



in Random Forests). A possible follow up of this work could
be its development and evaluation in scenarios with different
kind of financial transaction data, e.g., those generated in an
E-commerce environment.
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