
A Class-based Strategy to User Behavior
Modeling in Recommender Systems∗

Roberto Saia, Ludovico Boratto, and Salvatore Carta

Abstract A recommender system is a tool employed to filter the huge amounts

of data that companies have to deal with, and produce effective suggestions to the

users. The estimation of the interest of a user toward an item, however, is usually

performed at the level of a single item, i.e., for each item not evaluated by a user,

canonical approaches look for the rating given by similar users for that item, or for

an item with similar content. Such approach leads toward the so-called overspecial-

ization/serendipity problem, in which the recommended items are trivial and users

do not come across surprising items. This work first shows that user preferences are

actually distributed over a small set of classes of items, leading the recommended

items to be too similar to the ones already evaluated, then we propose a novel model,

named Class Path Information (CPI), able to represent the current and future pref-

erences of the users in terms of a ranked set of classes of items. The proposed ap-

proach is based on a semantic analysis of the items evaluated by the users, in order

to extend the ground truth and infer their future preferences. The performed exper-

iments show that our approach, by including in the CPI model the same classes

predicted by a state-of-the-art recommender system, is able to accurately model the

user preferences in terms of classes, instead of in terms of single items, allowing to

recommend non trivial items.

Roberto Saia, Ludovico Boratto, and Salvatore Carta

Dipartimento di Matematica e Informatica, Università di Cagliari, Via Ospedale 72 - 09124

Cagliari, Italy, e-mail: {roberto.saia,ludovico.boratto,salvatore}@unica.it

∗ This work is partially funded by Regione Sardegna under project SocialGlue, through PIA

- Pacchetti Integrati di Agevolazione “Industria Artigianato e Servizi” (annualità 2010), and by

MIUR PRIN 2010-11 under project “Security Horizons”.

1

2 Roberto Saia, Ludovico Boratto and Salvatore Carta

1 Introduction

The goal of a recommender system is to produce meaningful suggestions for the

users, related to items or products that might interest them [23] (e.g., goods on

Amazon, movies on Netflix, and so on). In this context, the literature highlights that

the rating prediction represents the core task of a recommender system [23, 4]. The

importance of this aspect has been further evidenced by the Netflix prize [8], and

recent studies showed its effectiveness also in improving classification tasks [2, 7,

33]. However, there are widely-known problems in the recommendation process.

Overspecialization/Serendipity. Independently from the approach used to build

the predictions, recommender systems usually suggest items that have a strong simi-

larity with the user profile, consequently the user always receives recommendations

for items very similar to those that she/he already considered and never receives

suggestions for unexpected, surprising, and novel items. This recommender sys-

tems limit, known in the literature as overspecialization/serendipity problem, wors-

ens the user experience and does not give the users the opportunity to explore new

items and to improve their knowledge [28]. It is known that this problem affects

both the most used recommendation strategies, i.e., the content-based [16] and the

collaborative filtering approaches [36]. In fact, on the one hand content-based rec-

ommender systems build their predictions by calculating the similarity between the

items’ content, while on the other hand collaborative filtering looks for items evalu-

ated by the users similar to the target user who has to receive the recommendations.

In the literature, several researches also highlight that the serendipity of a resource

can be computed by measuring its distance from the items previously considered by

the target user [16, 28, 14, 35].

Preference stability. To complicate the previous scenario, there are domains like

movies in which the preferences tend to be stable over time [9] (i.e., users tend to

watch movies of the same genres or by the same director/actor). This is useful to

maintain high-quality knowledge sources, but does not allow a system to diversify

the recommendations. Preference stability also leads to the fact that when users get

in touch with diverse items, diversity is not valued [19]. On the one side, users tend

to access to agreeable information (a phenomenon known as filter bubble [21]) and

this leads to the overspecialization problem, while on the other side they do not want

to face diversity.

Our contributions. In this paper we want to address the following research ques-

tion: can we exploit user preferences and represent them in a broader way. The goal

is to suggest non trivial items, but not too diverse from those the user already eval-

uated? In order to face this problem, we present a representation model, named

Class Path Information (CPI), built as a ranking of the classes of items that each

user prefers. The CPI model is built with a novel approach that performs a seman-

tic analysis of the items already evaluated by a user, in order to extend the ground

truth and infer if the terms used to describe the items evaluated by a user that be-

long to a class (e.g., the movies of a specific genre) also characterize other classes of

items, which the user may have or may have not evaluated. By modeling user prefer-

ences in terms of classes and by predicting where the future preferences of the users

A Class-based Strategy to User Behavior Modeling 3

will go, a recommender system can generate serendipity without recommending to

the users something too far from their preferences. Moreover, by understanding the

context in which recommendations should be produced in terms of classes, we avoid

calculating the semantic distance between single items, which is a heavy process in

terms of computational costs. Another advantage offered by this approach is that

the generated models can be used to produce recommendations with any approach.

Indeed, the CPI provides information of the classes of items the user prefers, which

can be exploited by any recommendation technique.

The main contributions coming from our proposal are the following:

• we show that preference stability exists in terms of classes of items. An anal-

ysis performed on two real-world datasets shows that user preferences are dis-

tributed over a small set of classes;

• we characterize each class of items using a set of Semantic Binary Sieves (SBS),

a novel type of filter able to weigh the relevance of each class for each user;

• we develop an algorithm able to evaluate a relevance score of each class of items

for each user by using the SBS filters;

• we introduce the novel concept of Class Path Information (CPI) model, which

builds a relevance score of the classes of items each user prefers, and define an

algorithm to create it;

• we evaluate our approach on a real-world dataset and show that the classes

available in the model have a large overlap with those of the items predicted by

a state-of-the-art recommender system.

This paper extends the work presented in [25] in the following ways:

(i) we define the practical implementation of the Semantic Binary Sieves, by intro-

ducing the algorithm needed to build them, explaining in detail how each step

works (Section 4.3.1);

(ii) we define the practical implementation of the Class Path Information, by in-

troducing the algorithm needed to build it, explaining in detail how each step

works (Section 4.4.1);

(iii) we formalize the concept of CPI Valid Length, a parameter that aims to deter-

mine the number of CPI elements (CPI length) to be taken into account, on the

basis of the operating environment (Section 4.4.2);

(iv) we perform a series of additional experiments aimed to compare the computa-

tional load of our approach, with that of SVD, reporting the differences in terms

of time needed to complete a recommendation process (Section 5.4.3).

Roadmap. The rest of the paper is organized as follows: Section 2 provides

a background on the concepts handled by our proposal and the formal definition

of our problem; Section 3 presents an analysis of preference stability on two real-

world datasets; Section 4 describes the details of the proposed approach to model

user preferences in terms of classes; Section 5 describes the experimental framework

used to evaluate our proposal; Section 6 discusses related work; Section 7 contains

conclusions and future work.

4 Roberto Saia, Ludovico Boratto and Salvatore Carta

2 Preliminaries

Background. For many years the item descriptions were analyzed with a word vec-

tor space model, where all the terms of each item description are processed by TF-

IDF [26] and stored in a weighted vector of terms. Due to the fact that this approach

based on a simple bag of words is not able to perform a semantic disambiguation of

the words in an item description, and motivated by the fact that exploiting a taxon-

omy for categorization purposes is an approach recognized in the literature [3] and

by the fact that a semantic analysis is useful to improve the accuracy of a classifica-

tion [5, 6], we decided to exploit the functionalities offered by the WordNet environ-

ment. Wordnet is a large lexical database of English, where nouns, verbs, adjectives,

and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing

a distinct concept. Synsets are interlinked by means of conceptual-semantic and

lexical relations.

Wordnet currently contains about 155,287 words, organized into 117,659 synsets

for a total of 206,941 word-sense pairs [12]. In a short, the main relation among

words in WordNet is the synonymy and the synsets are unordered sets of grouped

words that denote the same concept and are interchangeable in many contexts. Each

synset is linked to other synsets through a small number of conceptual relations.

Word forms with several distinct meanings are represented in as many distinct

synsets, in this way each form-meaning pair in WordNet will be unique (e.g., the

fly noun and the fly verb belong to two distinct synsets). Most of the WordNet rela-

tions connect words that belong to the same part-of-speech (POS). There are four

POS: nouns, verbs, adjectives, and adverbs. Both nouns and verbs are organized into

precise hierarchies, defined by hypernym or is-a relationships. For example, the first

sense of the word radio would have the following hypernym hierarchy, where the

words at the same level are synonyms of each other: some sense of radio is synony-

mous with some other senses of radiocommunication or wireless, and so on. Each

synset has a unique index and shares its properties, such as a gloss or dictionary

definition. We use the synsets to perform both the definition of binary filters and the

evaluation of the relevance scores of the classes in a user profile.

Notation. We are given a set of users U = {u1, . . . ,uN}, a set of items I =
{i1, . . . , iM}, and a set V of values used to express the user preferences (e.g.,

V = [1,5] or V = {like,dislike}). The set of all possible preferences expressed by

the users is a ternary relation P ⊆ U × I×V . We denote as P+ ⊆ P the subset of

preferences with a positive value (i.e., P+ = {(u, i,v) ∈ P|v ≥ v∨ v = like}), where

v indicates the mean value (in the previous example, v = 3). Moreover, we denote

as I+ = {i ∈ I|∃(u, i,v) ∈ P+} the set of items for which there is a positive prefer-

ence, and as Iu = {i ∈ I|∃(u, i,v) ∈ P+∧ u ∈U} the set of items a user u likes. Let

C = {c1, . . . ,cK} be a set of classes used to classify the items; we denote as Ci ⊆C

the set of classes used to classify an item i (e.g., Ci might be the set of genres that

a movie i was classified with), and with Cu = {c ∈ C|∃(u, i,v) ∈ P+ ∧ i ∈ Ci} the

classes associated to the items that a user likes.

Let BoW = {t1, . . . , tW} be the bag of words used to describe the items in I; we

denote as di be the binary vector used to describe each item i ∈ I (each vector is

A Class-based Strategy to User Behavior Modeling 5

such that |di|= |BoW |). We define as S = {s1, . . . ,sW} the set of synsets associated

to BoW (that is, for each term used to describe an item, we consider its associated

synset), and as sdi the semantic description of i. The set of semantic descriptions is

denoted as D = {sd1, . . . ,sdM} (note that we have a semantic description for each

item, so |D|= |I|). The approach used to extract sdi from di is described in detail in

Section 4.

Problem Definition. Given a set of positive preferences P+ that characterize

the items each user likes, a set of classes C used to classify the items, and a set of

semantic descriptions D, our goal is to assign a relevance score ru(c) for each user

u and each class c, based on the semantic descriptions D. Each relevance score will

be combined into a model CPIu, defined as follows:

CPIu = (ru(c1), . . . ,ru(cK)) (1)

Each CPIu must respect the following properties:

• ru(c1)≥ ...≥ ru(cK)
• CPIu ⊇Cu

So, each CPI model contains a list of classes ranked by relevance score and the

classes available in the model are a superset of the classes for which a user expressed

a preference (i.e., we are going to predict the future preferences of the users, based

on the semantic analysis of the items she/he likes).

3 Characterizing Preference Stability

In order to understand if preference stability can be characterized in terms of the

classes used to classify the items, in this section we are going to present the distri-

bution of the classes Cu related to the items a user likes. For each user u ∈U and

each class c ∈ Cu, we consider how many positive preferences the user expressed

for that class. We call this value the popularity of the class for that user, and define

it as the percentage of items that the user likes and belong to that class:

popularity(u,c) =
|{(u, i,v) ∈ P+|i ∈ c}|

|{(u, i,v) ∈ P+}|
(2)

Then, we ordered the popularity values of each user in decreasing order and

average all the popularity values at the position j in the list of each user (i.e., if

j = 1, we calculate the average amount of preferences each user expressed for the

items in the most popular class).

The study has been performed on the following real-world datasets:

Yahoo! Webscope R42. The dataset contains a large amount of data related to

users preferences expressed by the Yahoo! Movies community that are rated on the

base of two different scales, from 1 to 13 and from 1 to 5 (we have chosen to use

2 http://webscope.sandbox.yahoo.com

6 Roberto Saia, Ludovico Boratto and Salvatore Carta

the latter). The training data is composed by 7,642 users (|U |), 11,915 movies/items

(|I|), and 211,231 ratings (|R|), and all users involved have rated at least 10 items

and all items are rated by at least one user. The test data is composed by 2,309 users,

2,380 items, and 10,136 ratings. There are no test users/items that do not also appear

in the training data. Each user in the training and test data is represented by a unique

ID. As shown in Table 1, the items are classified by Yahoo in 20 different classes

(movie genres), and it should be noted that each item may be classified in multiple

classes.

Class Genre Class Genre

1 Comedy 11 Reality

2 Drama 12 Kids/Family

3 Action/Adventure 13 Crime/Gangster

4 Miscellaneous 14 Romance

5 Suspense/Horror 15 Western

6 Sci-Fi/Fantasy 16 Musical/Arts

7 Thriller 17 Documentary

8 Art/Foreign 18 Special Interest

9 Animation 19 Adult Audience

10 Horror 20 Features

Table 1 Yahoo! Webscope R4 Genres

Movielens 10M3. This dataset contains 10,000,054 ratings and 95,580 tags re-

lated to 10,681 movies by 71,567 users that were selected at random from Movie-

Lens (a movie recommendation website). All the users in the dataset had rated at

least 20 movies, and each user is represented by a unique ID. The ratings of the

items are based on a 5-star scale, with half-star increments. As shown in Table 2,

in this dataset the items are classified by Movielens in 18 different classes (movie

genres), and it should be noted that also in this case each item may be classified in

multiple classes.

Fig. 1 and Fig. 2 show the distribution of the popularities for the Yahoo! Web-

scope R4 and the Movielens 10M datasets. In Fig. 1, we can see that 41% of the

preferences are all in a single class (in other words, nearly half of the positive ratings

given by the users are for the same genre of movies) and, by considering as char-

acterizing only the classes with popularity≥ 1%, it is possible to observe that user

preferences are distributed on 6 out of 20 classes. Fig. 2 shows that in the Movielens

dataset preference stability has a lower impact. In fact, 26% of the ratings are in the

most important class for each user, and 10 out of 18 classes are involved in the user

preferences.

This analysis showed that preferences stability exists in terms of classes, and

that user preferences are distributed between 30% and 55% of the classes. Based on

3 http://grouplens.org/datasets/movielens/

A Class-based Strategy to User Behavior Modeling 7

Class Genre Class Genre

1 Action 10 Film-Noir

2 Adventure 11 Horror

3 Animation 12 Musical

4 Children’s 13 Mystery

5 Comedy 14 Romance

6 Crime 15 Sci-Fi

7 Documentary 16 Thriller

8 Drama 17 War

9 Fantasy 18 Western

Table 2 Movielens 10M Genres

4 8 12 16 20

10
20
30
40
50
60
70
80
90

100

(Classes ranked by popularity)

(%
p
o
p
u
la

ri
ty

fo
r

th
at

cl
as

s)

Webscope-R4

Fig. 1 Webscope-R4 - Involved Classes in the User Preferences

4 8 12 16 20

10
20
30
40
50
60
70
80
90

100

(Classes ranked by popularity)

(%
p
o
p
u
la

ri
ty

fo
r

th
at

cl
as

s)

Movielens 10M

Fig. 2 Movielens 10M - Involved Classes in the User Preferences

these results, in the next section we are going to deepen our knowledge on the user

preferences in terms of classes, in order to accurately model them.

8 Roberto Saia, Ludovico Boratto and Salvatore Carta

4 Our Approach

In this section we present our approach, which performs a semantic analysis of the

descriptions of the items the users like, in order to build a model that infers where the

future preferences will go. The goal is to understand which terms used to describe

an item that a user likes characterize other classes of items. Our modeling approach

performs four steps:

1. Text Preprocessing: processing of the textual information (description, title,

etc.) present in all items, in order to remove the useless elements for the subse-

quent operation of synset retrieving;

2. User Modeling: creation of a model that contains which synsets are present in

the items a user likes;

3. Semantic Binary Sieve Construction: creation of a binary vector for each

class of items, and subsequent definition of the Semantic Binary Sieves (SBS),

a series of filters that we use to estimate which synsets are relevant for that class;

4. Class Path Information Modeling: definition of the Class Path Information

(CPI) model that, based on the semantic analyses performed in the previous

steps, infers the user preferences in terms of classes.

Note that all steps are based on the use of WordNet synsets, which allow us to

consider the semantics of the content, without performing complex operations on it.

In the following, we will describe in detail how each step works.

4.1 Text Preprocessing

Before extracting the WordNet synsets from the text that describes each item, we

need to follow several preprocessing tasks. The first is to detect the correct Part-

Of-Speech (POS) for each word in the text; in order to perform this task, we used

the Stanford Log-linear Part-Of-Speech Tagger [32].Then, we remove punctuation

marks and stop-words, which represent noise during the semantic analysis. Several

stop-words lists can be found in the Internet, and in this work we used a list of 429

stop-words made available with the Onix Text Retrieval Toolkit4. Andfter we have

determined the lemma of each word using the Java API implementation for WordNet

Searching JAWS5, we perform the so-called word sense disambiguation, a process

where the correct sense of each word is determined. The best sense of each word in

a sentence was found using the Java implementation of the adapted Lesk algorithm

provided by the Denmark Technical University similarity application [27]. All the

collected synsets form the set S = {s1, . . . ,sW } defined in Section 2. The output of

this step is the semantic disambiguation of the textual description of each item i ∈ I,

4 http://www.lextek.com/manuals/onix/stopwords.html
5 http://lyle.smu.edu/ tspell/jaws/index.html

A Class-based Strategy to User Behavior Modeling 9

which is stored in a binary vector dsi; each element of the vector dsi[w] is 1 if the

corresponding synset appears in the item description, and 0 otherwise.

4.2 User Modeling

For each user u ∈U , this step considers the set of items Iu she/he likes, and builds a

user model mu that describes which synsets characterize the user profile (i.e., which

synsets appear in the semantic description of these items). Each model mu is a binary

vector that contains an element for each synset sw ∈ S.

In order to build the vector, we consider the semantic description dsi of each

item i ∈ Iu for which the user expressed a positive preference. This step builds mu,

by performing the following operation on each element w:

mu[w] =

{

1, i f dsi[w] = 1

mu[w], otherwise
(3)

This means that if the semantic description of an item i contains the synset sw,

the synset becomes relevant for the user, and we set to 1 the bit at position w in the

user model mu; otherwise, its value remains unaltered. By performing this operation

for all the items i ∈ Iu, we model which synsets are relevant for the user. The output

of this step is a set M = {m1, . . . ,mN} of user models (note that we have a model for

each user, so |M|= |U |).

4.3 Semantic Binary Sieve Construction

For each class c ∈ C, we create a binary vector that will store which synsets are

relevant for that class. These vectors, called Semantic Binary Sieves, will be stored

in a set B = {b1, . . . ,bK} (note that |B|= |C|, since we have a vector for each class).

Each vector bk ∈ B contains an element for each synset sw ∈ S (i.e., |bk|= |S|).
In order to build the vector, we consider the semantic description dsi of each item

i ∈ I+ for which there is a positive preference, and each class ck with whom i was

classified. The binary vector bk will store which synsets are relevant for a class ck,

by performing the following operation on each element bk[w] of the vector:

bk[w] =

{

1, i f dsi[w] = 1∧ i ∈ ck

bk[w], otherwise
(4)

In other words, if the semantic description of an item i contains the synset sw, the

synset becomes relevant for each class ck that classifies i, and the semantic binary

sieve bk associated to ck has the bit at position w set to 1; otherwise, its value remains

unaltered. By performing this operation for all the items i ∈ I+ that are classified

with ck, we know which synsets are relevant for the class.

10 Roberto Saia, Ludovico Boratto and Salvatore Carta

4.3.1 Algorithm

Based on the above considerations, we can now define the Algorithm 1 used to

create a Semantic Binary Sieve for each class (i.e., genre) of items. The algorithm

takes as input a class c ∈ C and the set of items I, and returns as output the SBS

related with the class c.

Algorithm 1 Create SBS

Input: c=class, I= set of items

Output: SBS=Semantic Binary Sieves of c

1: N = |GetDistinctSynsets(I)|
2: SBS = NewVector[N]
3: Ic = GetClassItems(c)
4: for each item i in Ic do

5: d = GetItemDescription(i)
6: S← RetrieveAllSynsets(d)
7: for each s in S do

8: idx = GetSynsetIndex(s)
9: SBS[idx] = 1

10: end for

11: end for

12: Return SBS

We start by storing in N the number of distinct synsets in the set I, which repre-

sents our synset ontology (step 1), then we create a SBS vector of size N (step 2).

In the next step, we put in the set Ic all items that belong to a class c (step 3). For

each of these items, we extract the description and the related synsets (steps 5 and

6), setting to 1 the element of the vector SBS that correspond with the index of these

synsets (steps from 7 to 10). The algorithm ends by returning the SBS vector.

4.4 Class Path Information Modeling

This step compares the output of the two previous steps (i.e., the set B of binary

vectors related to the Semantic Binary Sieves, and the set M of binary vectors related

to the user models), in order to infer which classes are relevant for a user and where

the future user preferences will go. The main idea is to consider which synsets are

relevant for a user u (this information is stored in the user model mu) and evaluate

which classes are characterized by the synsets in mu (this information is contained

in each vector bk, which contains the synsets that are relevant for the class ck). The

objective is to build a relevance score ru[k], which indicates the relevance of the

class ck for the user u.

The key concept behind this step is that we do not consider the items a user

evaluated anymore. Each vector in B is used as a filter (for this reason the vectors

are called semantic binary sieves), which allows us to estimate the relevance of

A Class-based Strategy to User Behavior Modeling 11

each class for that user. Therefore, the relevance score of a class for a user can

be used to infer where the future preferences of the users will go, since a user

might be associated to classes of items she/he never expressed a preference for,

but characterized by synsets that also characterize the user model. By ordering the

relevance scores in decreasing order (from the most to the least relevant), we can

build a model, named Class Path Information (CPI), which can be used to generate

recommendations for the users. Indeed, a recommender system might use this model

to know which classes are relevant for the user, and with which score.

By considering each semantic binary sieve bk ∈ B associated to the class ck and

the user model mu, we define a matching criterion Θ between each synset mu[w]
in the user model, and the corresponding synset bk[w] in the semantic binary sieve,

by adding 1 to the relevance score of that class for the user (element ru[k]) if the

synset is set to 1 both in the semantic binary sieve and in the user model, and leav-

ing the current value as it is otherwise. The semantics of the operator is shown in

Equation (5).

bk[w]Θmu[w] =

{

ru[k]++, i f mu[w] = 1∧bk[w] = 1

ru[k], otherwise
(5)

By comparing a user model mu with each vector bk ∈ B, we obtain a vector ru that

contains the relevance score of each class for the user (i.e., |ru|= |C|). The relevance

scores of each class for each user are sorted in decreasing order to build the CPI

model for a user u (i.e., each model respects the following property: ru(c1)≥ . . .≥
ru(cK)):

CPIu = (ru(c1), . . . ,ru(cK)) (6)

The output of this step is a Class Path Information model CPIu for each user

u ∈U .

4.4.1 Algorithm

Algorithm 2 is used to create a Class Path Information for a user. It requires as input

the set of items I, the user profile Iu (i.e., the set of items positively evaluated by the

user u), and the set of classes C. It returns as output the CPI of a user u, which

represents her/his preferences in terms of classes, sorted in decreasing order.

12 Roberto Saia, Ludovico Boratto and Salvatore Carta

Algorithm 2 Create CPI

Input: I= set of items, Iu= User profile, C=Classes of items

Output: CPI = Class Path Information of u

1: d = GetItemsDescription(Iu)
2: S← RetrieveAllSynsets(d)
3: CPI = NewVector[|C|]
4: for each class c in C do

5: SBS =CreateSBS(c, I)
6: for each s in S do

7: x = GetSynsetIndex(s)
8: y = GetClassIndex(c)
9: if SBS[x] == 1 then

10: CPI[y]+ = 1

11: end if

12: end for

13: end for

14: CPI← Sort(CPI,Descending)
15: Return CPI

We start by appending in d the descriptions of the items in the user profile Iu,

retrieving the related synsets (steps 1 and 2). In the step 3 we create a CPI vector

of size |C| (i.e., the number of classes), then for each class c ∈ C, we retrieve its

SBS (step 5). In the steps from 6 to 12, we check each synset extracted from the

user profile, and when the corresponding synset value in the SBS is 1, we increase

by 1 unit the element of the vector CPI that corresponds with the class that we are

processing. The algorithm ends by returning the CPI vector, sorted in decreasing

order (steps 14 and 15).

4.4.2 CPI Valid Length

A possible way to determine the number of CPI elements to be taken into account,

is by introducing the parameter θ , which denotes the number of CPI elements to

consider. For instance, given θ = 2, we take into account only the classes stored

in the CPI with a weight > 2. We calculate the optimal value of θ as showed in

Equation 7, where Max(C) denotes the maximum value of weight assumed by a

class, while |U | and |C| denote, respectively, the number of users and classes, and

the Zeros(C) denotes the number of classes with a value equal to 0.

θ =

⌊

Max(C)

(|U | · |C|)−Zeros(C)
·Classes

⌋

(7)

The CVL (Check Valid Length) Algorithm 3 implements this operation. It re-

quires as input the CPI of a user u and the θ value, and returns the CPI valid length

for the user u, i.e., the part of CPI to be taken into account. For each class stored in

the CPI value (step 2), it counts how many classes have a weight higher than θ (step

A Class-based Strategy to User Behavior Modeling 13

3), returning this value when there is a class with a weight not greater than θ (step

5).

Algorithm 3 Get CVL

Input: CPIu= CPI value of the user u, θ=Weight level

Output: L = Valid length of CPI

1: L=0

2: for each class c in CPIu do

3: if Weight(c) > θ then L++

4: else

5: Return L

6: end if

7: end for

5 Experimental Framework

The experimental framework was developed by using a machine with an Intel Pen-

tium CPU P6100 Dual Core (2 GHz × 2) and a Linux 64-bit Operating System

(Debian Wheezy) with 4 GBytes of RAM. The environment for this work is based

on the Java language, with the support of Java API implementation for WordNet

Searching (JAWS) to perform the semantic measures, and the support of Apache

Mahout6 Java framework to implement the state-of-the-art approach that we com-

pare our CPI modeling approach with.

This section first describes the dataset and the preprocessing performed on the

data, then we describe the strategy used to perform the evaluation, the metrics, and

we conclude by presenting the experimental results.

5.1 Dataset and Data Preprocessing

We performed our experiments using the Yahoo! Webscope Movie dataset (R4) de-

scribed in Section 3. Note that we had to limit our evaluation only to one of the two

datasets previously considered, since the Movielens 10M dataset does not contain

any textual description of the items.

In order to create a binary sieve for each class used to build a CPI model for every

user (we take in account only the 2,309 users available in the test set), we need to

define an ontology of synsets based on the descriptions of the items. To perform

this operation we considered the description and title of each movie, and since the

used algorithm takes into account only the items with a rating above the average,

we selected only the movies with a rating ≥ 3.

6 https://mahout.apache.org

14 Roberto Saia, Ludovico Boratto and Salvatore Carta

5.2 Strategy

The objective of our approach is to create a model that infers the preferences of

the users in terms of classes, not only relying on the ground truth. As stated in

the motivation of our work, the main domain of application that could benefit of

this modeling approach are the recommender systems, which build predictions for

the items not yet evaluated. Therefore, we applied a state-of-the-art recommender

system to our dataset, and evaluated for each user u the set of classes Cu for which a

positive value was predicted, and compared them with the CPIu model built for that

user.

The system chosen for the comparison is SVD++ [34], the Koren’s version of

SVD [10] that has been proved to be one of the most accurate approaches. The

SVD++ approach, which we implemented through the Mahout functionalities, in

addition to the training dataset requires two additional parameters: the number of

target features and the number of training steps to run. After a training of the param-

eters, the algorithm was run with the following setting: the first parameter would be

equivalent to the number of involved genres, thus we have set this value to 20; about

the second parameter, considering that larger values mean longer training time, and

that we have not experienced significant improvements with higher values, we have

chosen the value of 4.

We required the system to produce N recommendations for each user and tested

different values of the parameter (more specifically, N = {20,40, ...,100}). The

classes involved in the recommended items were almost identical in all the settings,

therefore we chose N = 100 to perform an evaluation in which as much information

as possible was available for the comparison.

We compare the results in relation about three different aspects:

• Evaluation of preference stability. We perform the same analysis performed

in Section 3, and measure the average number of classes involved in our CPI

models and their popularity (i.e., how many positive preferences are associ-

ated to each class). The objective is to understand how capable our modeling

approach is at reducing the effects of preference stability (which, as highlighted

in the Introduction, introduces overspecialization problems), by extending the

ground truth;

• Evaluation of the classes included in the model. In order to evaluate the sig-

nificance of the produced models, we evaluate the overlap between the classes

produced by the CPI model and the classes involved in the items recommended

by SVD++, by measuring the Jaccard index between the sets Cu and CPIu;

• Evaluation of the computational load. We evaluate the computational load

of our approach, by comparing it with the SVD one, through a series of exper-

iments aimed to measure the differences in terms of time needed to complete a

recommendation process.

A Class-based Strategy to User Behavior Modeling 15

5.3 Metrics

The popularity metric, which allows to measure preference stability, was already

introduced in Section 3 (Equation 2). The evaluation of the classes included in the

model has been performed by measuring the Jaccard index, in order to measure the

overlap between the classes included in our CPI model (denoted as Cu(CPI)), and

those that classify the items recommended by SVD++ (denoted as Cu(SDV ++)):

J(Cu(CPI),Cu(SDV ++)) = |Cu(CPI)∩Cu(SDV++)|
|Cu(CPI)∪Cu(SDV++)|

(8)

During this operation we considered the three most relevant classes identified by

the two approaches.

5.4 Experimental Results

This section presents the results obtained by the three evaluations previously pre-

sented.

5.4.1 Evaluation of preference stability

Fig. 3 shows preference stability for both approaches. The results show that the ef-

fect of preference stability is strongly reduced by our approach. In fact the number of

classes involved in the model is now 10 (remember that in Section 3 we showed that

user preferences were distributed over 6 classes). This shows an important first re-

sult, which is the capability of our approach to extend the ground truth and to be able

to characterize user preferences over a larger set of classes, without considering the

preferences of the other users. By enlarging the set of classes, we can also see that

the popularity of each class (i.e., the number of preferences expressed for the items

that belong to a class), is also strongly reduced; indeed, we move from 46% of pref-

erences that characterize the main class of each user to a 27.2% value. We can also

notice that the amount of classes inferred by our model that has a popularity≥ 1%

is exactly the same available in the Cu(SVD++) models. This means that our ap-

proach is able to characterize user preferences in terms of classes without producing

any comparison with the preferences of the other users, thus strongly reducing the

computational load necessary to infer what a user is going to like.

5.4.2 Evaluation of the classes included in the model

The previous analysis showed that the number of classes involved in our CPI models

is the same of those produced by the SVD++ predictions. However, this result is not

enough to validate our model, as the two sets of classes might be completely differ-

16 Roberto Saia, Ludovico Boratto and Salvatore Carta

ent. For each user we measured the Jaccard index on the sets of classes and averaged

the obtained values. The average value of all results is 0.8218, which demonstrates

that the most popular classes recommended through our CPI model are almost the

same of the SVD++ approach. This demonstrates that in spite its simplicity, the CPI

approach operates within the same range of items of a canonical approach at the

state-of-the-art.

2 4 6 8 10

5

15

25

35

45

(Classes ranked by popularity)

(%
p
o
p
u
la

ri
ty

fo
r

th
at

cl
as

s)

CPI

SVD++

Fig. 3 Class Distribution by Popularity

5.4.3 Evaluation of the Computational Load

In order to compare the computational load of our approach, with that of SVD,

we performed a series of experiments, whose results are presented in Figure 4. We

show the differences, between our approach and SVD, in terms of time needed to

complete a recommendation process. In more detail, we compare the performance

by comparing the time needed to recommend N items, with N = {10,20, ...,100}.
The value in the Y axis denotes the elapsed time needed to recommend the items,

and the value on the X axis denotes the number of the recommendations. As we can

observe, the results show a considerable difference in term of computational load,

in favor of our approach.

20 40 60 80 100

1
2
3
4
5
6
7
8

(Recommendations)

(S
ec

o
n
d
s)

CPI

SVD

Fig. 4 Computational Load Comparison

A Class-based Strategy to User Behavior Modeling 17

6 Related Work

Likewise to other contexts, in recommender systems the preferences of the users

about new choices (goods or services) tend to follow the behavior of the other users

with similar tastes. This is a well-known phenomenon, called homophily, that in

the recommender systems environment is embraced by the most common strate-

gies used to recommend new items (e.g., content-based [16] and collaborative-

filtering [11, 15] approaches). If on the one hand this approach leads toward items

of likely interest to users, on the other hand it reduces the range of items of potential

interest that a system could recommend, augmenting the serendipity problem, in a

scenario known as the filter bubble [21]. The serendipity problem, i.e., the ability

for a recommender system to suggest items of potential interest to the user that are

not trivial, i.e., too similar to those in a user profile. In some works, such as [28],

serendipity is briefly described as a measure of how surprising the successful recom-

mendations are. The same work discusses the serendipity as the deviation from the

natural prediction [20], and introduces the opportunity to estimate an optimal devi-

ation value to use in order to make recommendations, underlining the risk related

to an inappropriate measurement, which can lead toward a loss of user trust in re-

gard to the recommendation system. A disadvantage that affects those recommender

systems that take into account the diversity [1] is that they still operate within the

classes of items for which users have expressed an explicit liking.

Another well-known problem is the so called selective exposure, i.e., the ten-

dency of users to make their choices (goods or services) based only on their usual

preferences, a typical way to proceed that excludes the possibility for the users to

find new items that may be of interest to them [13]. The literature presents several

approaches that try to reduce this problem, e.g., the NewsCube [22] that operates

offering to the users several points of views, in order to stimulate them to make

different and not usual choices.

In order to represent the user preferences and improve the effectiveness of the

suggestions, in the literature we can find several approaches. For instance, users

can be classified based on some explicit features (e.g., their demographic data)

by extracting this information from sources such as Twitter [18], or based on

other implicit features extracted through a more complex analysis of the same

sources [17]. The problem of modeling semantically correlated items has been tack-

led in [29, 30, 31], by considering the temporal aspect. In [24], an approach to

preprocess the users profiles in order to detect and remove the items that generate

noise and could make the profiles not adherent to the real tastes of the users is also

presented. The serendipity problem shows that a challenge in this area is then to

identify a method able to make effective predictions, exploiting not only the infor-

mation present in the user profiles. Our approach faces this problem by introducing

a new modeling approach based on the class of items instead of considering the

items. This is a new strategy of classification based on the classes that extends the

set of possible items to recommend, taking also into account those distant from the

previous choices of the users, although within their favorite classes of items. The

18 Roberto Saia, Ludovico Boratto and Salvatore Carta

use of a class-based model is also able to reduce the entity of the selective exposure

problem, because it selects the items within a broader set of classes.

7 Conclusions and Future Work

The approach proposed in this work represents a novel way to model the user prefer-

ences, in terms of classes instead of single items, with the goal to generate non trivial

recommendations. It is based on a semantic process able to create models that char-

acterize each class and each user in terms of preferences. Such process starts by

generating a set of binary filters (called Semantic Binary Sieves) that characterize

each class of items, using them to build a class relevance score for each user. The

class relevance scores are combined in a ranked list, called Class Path Information

model, which gives us information about the user preferences in terms of classes.

Experimental results showed the capability of our approach to extend the ground

truth and infer where the future preferences of the users will go. Indeed, by com-

paring our models with the set of classes of the items predicted by a state-of-the-art

recommender system, we highlighted a strong overlap between them. This means

that our approach is able to accurately infer user preferences in terms of classes, and

that the generated models can be employed by a recommender system to select items

within the set of classes included in the model. The advantages are both on the com-

putational load, since the system avoids calculating the semantic distance between

the items, and on the possibility to recommend items that are not too dissimilar to

those she/he already positively evaluated.

A possible follow up of this work could be the implementation of our modeling

technique in a recommender system. The objective is to produce the recommenda-

tions considering the classes available in the model, which are semantically related

to the items a user likes, but not the same. This kind of approach would allow us to

reduce the negative consequences caused by diversity, producing serendipitous but

effective item recommendations.

References

1. S. Abbar, S. Amer-Yahia, P. Indyk, and S. Mahabadi. Real-time recommendation of diverse

related articles. In D. Schwabe, V. A. F. Almeida, H. Glaser, R. A. Baeza-Yates, and S. B.

Moon, editors, 22nd International World Wide Web Conference, WWW ’13, Rio de Janeiro,

Brazil, May 13-17, 2013, pages 1–12. International World Wide Web Conferences Steering

Committee / ACM, 2013.

2. A. Addis, G. Armano, A. Giuliani, and E. Vargiu. A recommender system based on a generic

contextual advertising approach. In Proceedings of the 15th IEEE Symposium on Computers

and Communications, ISCC 2010, Riccione, Italy, June 22-25, 2010, pages 859–861. IEEE,

2010.

3. A. Addis, G. Armano, and E. Vargiu. Assessing progressive filtering to perform hierarchical

text categorization in presence of input imbalance. In A. L. N. Fred and J. Filipe, editors, KDIR

A Class-based Strategy to User Behavior Modeling 19

2010 - Proceedings of the International Conference on Knowledge Discovery and Information

Retrieval, Valencia, Spain, October 25-28, 2010, pages 14–23. SciTePress, 2010.

4. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A sur-

vey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng., 17(6):734–

749, 2005.

5. G. Armano, A. Giuliani, and E. Vargiu. Semantic enrichment of contextual advertising by

using concepts. In J. Filipe and A. L. N. Fred, editors, KDIR 2011 - Proceedings of the

International Conference on Knowledge Discovery and Information Retrieval, Paris, France,

26-29 October, 2011, pages 232–237. SciTePress, 2011.

6. G. Armano, A. Giuliani, and E. Vargiu. Studying the impact of text summarization on con-

textual advertising. In F. Morvan, A. M. Tjoa, and R. Wagner, editors, 2011 Database and

Expert Systems Applications, DEXA, International Workshops, Toulouse, France, August 29 -

Sept. 2, 2011, pages 172–176. IEEE Computer Society, 2011.

7. G. Armano and E. Vargiu. A unifying view of contextual advertising and recommender sys-

tems. In A. L. N. Fred and J. Filipe, editors, KDIR 2010 - Proceedings of the International

Conference on Knowledge Discovery and Information Retrieval, Valencia, Spain, October 25-

28, 2010, pages 463–466. SciTePress, 2010.

8. J. Bennett, C. Elkan, B. Liu, P. Smyth, and D. Tikk. Kdd cup and workshop 2007. SIGKDD

Explor. Newsl., 9(2):51–52, Dec. 2007.

9. R. D. Burke and M. Ramezani. Matching recommendation technologies and domains. In

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook,

pages 367–386. Springer, 2011.

10. M. J. P. Daniel Billsus. Learning collaborative information filters. In J. W. Shavlik, editor,

Proceedings of the Fifteenth International Conference on Machine Learning (ICML 1998),

Madison, Wisconsin, USA, July 24-27, 1998, pages 46–54. Morgan Kaufmann, 1998.

11. C. Desrosiers and G. Karypis. A comprehensive survey of neighborhood-based recommen-

dation methods. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender

Systems Handbook, pages 107–144. Springer, 2011.

12. C. Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books, 1998.

13. L. Festinger. A theory of cognitive dissonance, volume 2. Stanford university press, 1962.

14. L. Iaquinta, M. de Gemmis, P. Lops, G. Semeraro, M. Filannino, and P. Molino. Introducing

serendipity in a content-based recommender system. In HIS, pages 168–173. IEEE Computer

Society, 2008.

15. Y. Koren and R. M. Bell. Advances in collaborative filtering. In F. Ricci, L. Rokach,

B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook, pages 145–186.

Springer, 2011.

16. P. Lops, M. de Gemmis, and G. Semeraro. Content-based recommender systems: State of the

art and trends. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender

Systems Handbook, pages 73–105. Springer, 2011.

17. M. Michelson and S. A. Macskassy. Discovering users’ topics of interest on twitter: a first

look. In Proceedings of the Fourth Workshop on Analytics for Noisy Unstructured Text Data,

AND 2010, Toronto, Ontario, Canada, October 26th, 2010 (in conjunction with CIKM 2010).

ACM, 2010.

18. A. Mislove, S. Lehmann, Y. Ahn, J. Onnela, and J. N. Rosenquist. Understanding the demo-

graphics of twitter users. In Proceedings of the Fifth International Conference on Weblogs

and Social Media, Barcelona, Catalonia, Spain, July 17-21, 2011. The AAAI Press, 2011.

19. S. A. Munson and P. Resnick. Presenting diverse political opinions: How and how much. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10,

pages 1457–1466, New York, NY, USA, 2010. ACM.

20. T. Murakami, K. Mori, and R. Orihara. Metrics for evaluating the serendipity of recommen-

dation lists. In K. Satoh, A. Inokuchi, K. Nagao, and T. Kawamura, editors, New Frontiers in

Artificial Intelligence, JSAI 2007 Conference and Workshops, Miyazaki, Japan, June 18-22,

2007, Revised Selected Papers, volume 4914 of Lecture Notes in Computer Science, pages

40–46. Springer, 2008.

20 Roberto Saia, Ludovico Boratto and Salvatore Carta

21. E. Pariser. The Filter Bubble: What the Internet Is Hiding from You. Penguin Group , The,

2011.

22. S. Park, S. Kang, S. Chung, and J. Song. Newscube: delivering multiple aspects of news to

mitigate media bias. In Proceedings of the 27th International Conference on Human Factors

in Computing Systems, CHI 2009, Boston, MA, USA, April 4-9, 2009. ACM, 2009.

23. F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender systems handbook. In

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook,

pages 1–35. Springer, 2011.

24. R. Saia, L. Boratto, and S. Carta. Semantic coherence-based user profile modeling in the

recommender systems context. In Proceedings of the 6th International Conference on Knowl-

edge Discovery and Information Retrieval, KDIR 2014, Rome, Italy, October 21-24, 2014,

pages 154–161. SciTePress, 2014.

25. R. Saia, L. Boratto, and S. Carta. A new perspective on recommender systems: a class path in-

formation model. In Science and Information Conference (SAI), 2015, pages 578–585. IEEE,

2015.

26. G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Inf. Process.

Manage., 24(5):513–523, Aug. 1988.

27. G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commun.

ACM, 18(11):613–620, 1975.

28. G. Shani and A. Gunawardana. Evaluating recommendation systems. In F. Ricci, L. Rokach,

B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook, pages 257–297.

Springer, 2011.

29. G. Stilo and P. Velardi. Temporal semantics: Time-varying hashtag sense clustering. In Knowl-

edge Engineering and Knowledge Management, volume 8876 of Lecture Notes in Computer

Science, pages 563–578. Springer International Publishing, 2014.

30. G. Stilo and P. Velardi. Time makes sense: Event discovery in twitter using temporal simi-

larity. In Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web

Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 02, WI-IAT ’14, pages

186–193, Washington, DC, USA, 2014. IEEE Computer Society.

31. G. Stilo and P. Velardi. Efficient temporal mining of micro-blog texts and its application to

event discovery. Data Mining and Knowledge Discovery, 2015.

32. K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-of-speech tagging

with a cyclic dependency network. In Proceedings of the 2003 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics on Human Language Technol-

ogy - Volume 1, NAACL ’03, pages 173–180, Stroudsburg, PA, USA, 2003. Association for

Computational Linguistics.

33. E. Vargiu, A. Giuliani, and G. Armano. Improving contextual advertising by adopting collab-

orative filtering. ACM Trans. Web, 7(3):13:1–13:22, Sept. 2013.

34. C. V. Yehuda Koren, Robert M. Bell. Matrix factorization techniques for recommender sys-

tems. IEEE Computer, 42(8):30–37, 2009.

35. M. Zhang and N. Hurley. Avoiding monotony: improving the diversity of recommendation

lists. In RecSys, pages 123–130. ACM, 2008.

36. C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists

through topic diversification. In A. Ellis and T. Hagino, editors, Proceedings of the 14th

international conference on World Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005,

pages 22–32. ACM, 2005.

