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Road surveillance systems play an important role in traffic monitoring and detecting hazardous events. In recent 
years, several artificial intelligence-based approaches have been proposed for this purpose, typically based on 
the analysis of the acquired video streams. However, occlusions, poor lighting conditions, and heterogeneity of 
the events may often reduce their effectiveness and reliability. To overcome the limitations mentioned, scientific 
and industrial research has therefore focused on integrating such solutions with audio recognition methods. By 
automatically identifying anomalous traffic sounds, e.g., car crashes and skids, they help reduce false positives 
and missed alarms. Following this trend, in this work, we propose an innovative pipeline for the analysis of 
intensity-projected audio spectrograms from streams of traffic sounds, which exploits both (i) a visual approach 
based on a custom, special-purpose Convolutional Neural Network for the identification of anomalous events on 
the sound signal; and, (ii) a novel multi-representational encoding of the input, which proved to significantly 
improve the recognition accuracy of the neural models. The validation results of the proposed pipeline on the 
public MIVIA dataset, with a 0.96% of false positive rate, showed to be the best performance against the state-

of-the-art competitors. Notably, following such findings, a prototype implementation has been deployed on a 
real-world video surveillance infrastructure.
1. Introduction

Recent World Health Organization (WHO) studies report that an av-

erage of 1.3 million people die each year due to road accidents, with 
between 20 and 50 million injured. These findings are not encouraging, 
so several countries are increasing efforts to manage this problem [1]. 
An actionable path to counter the phenomenon is the enhancement of 
instant notification systems so that authorities can be quickly alerted 
for immediate intervention. In this way, it is possible to increase the 
chances of survival of the injured and prevent further side events [2,3]. 
Solutions that can fulfill this need can essentially be classified into two 
types: (i) active ones, i.e., those that require voluntary action, or (ii) 
passive ones, i.e., those that use sensors inside or outside the vehicle 
can automatically identify the accident event [4,5]. The first category 
includes devices for speed dialing to emergency numbers, such as the 
SOS buttons installed in modern cars [6,7]. The second, on the other 
hand, assumes the adoption of built-in, e.g. crash sensors or off-vehicle

* Corresponding author.

E-mail addresses: sebastianpodda@unica.it (A.S. Podda), riccardo.balia@unica.it (R. Balia), livio.pompianu@unica.it (L. Pompianu), salvatore@unica.it

monitoring systems, like traffic video surveillance systems [8]. Video 
surveillance systems are proving to be particularly effective for this pur-

pose since, in addition to being widely used in urban and non-urban 
settings, they also allow the safeguarding of drivers of vehicles, either 
old or not equipped with expensive security facilities. However, their 
use is often limited to a traditional unsupervised scenario recording be-

cause of the high costs of personnel and resources needed for continuous 
monitoring. For these reasons, novel Artificial Intelligence and Com-

puter Vision techniques represent a turning point for this sector, as they 
allow the automation of the scene understanding and alerting activi-

ties [9–12]. Since most of these approaches are image-based, they tend 
to suffer significantly from environmental factors such as poor lighting, 
weather conditions, and occlusions, to name a few. Accordingly, scien-

tific research has recently focused on integrating such solutions with 
models capable of analyzing context information, especially the audio 
signal often associated with the captured video stream.
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Following this trend, in this study, we propose an original method, 
based on a visual approach that uses Convolutional Neural Networks

(CNNs), to detect road hazard events by analyzing the spectrogram 
of the audio signal collected by traffic surveillance systems. Note that 
although several contributions in the literature [13–16] adopt similar 
approaches, the methodology proposed in this paper differs significantly 
from them. The foundational element of our proposal lies in the fact 
that a series of transformations, known as intensity projections, a popu-

lar technique used in medical field [17], are applied to the spectrogram 
to generate an enhanced encoding of the input - that we refer to as 
multi-representational - capable of both taking into account the origi-

nal representation of the data and highlighting areas of harmonic and 
rhythmic breakup. In addition, we also designed a custom CNN archi-

tecture to exploit the potential of such enhanced encoding.

Summarizing, the main contributions of this work are:

1. we first experiment with different Deep Learning-based approaches 
to detect and classify road hazard events, especially accidents, from 
audio signals, determining an initial baseline on the type of archi-

tecture that performs best;

2. we then propose a novel multi-representational CNN architecture 
that exploits, in a synergistic and efficient mode, the visual informa-

tion obtained from the analysis of the audio spectrogram, as well as 
its intensity projections on the frequency and time axes;

3. we validate the effectiveness of our method by (i) demonstrating 
its ability to significantly improve performance with respect to us-

ing a standard CNN architecture on the basic spectrogram and (ii) 
comparing its results against the state-of-the-art competitors on the 
public MIVIA Audio Road Events dataset, showing the superiority of 
the proposed architecture to detect road hazardous sounds in urban 
scenarios.

The remainder of the manuscript is organized as follows. Section 2

presents an overview of the related work, while Section 3 describes the 
proposed method in detail. Section 4 illustrates the experimental setup, 
with a focus on the pre-processing stage. Then, Section 5 shows the 
validation results and the comparison with the state-of-the-art. Finally, 
Section 6 concludes the paper and outlines the future research direc-

tions.

2. Related work

Identifying accidents and, more generally, harmful events for road 
users is a hot research area for the artificial intelligence scientific com-

munity. In particular, the most common literature approaches exploit 
the analysis of video or, less frequently, audio-type signals.

The number of studies oriented toward event recognition from video 
is growing due to the widespread deployment of video surveillance in-

frastructure in modern urban settings. Among them, Thomas et al. [18]

propose an optimized framework for perceptual video summarization

and categorizing different stages of accidents and types of collisions. 
On the other hand, Arceda et al. [19] present a three-stage framework 
in which they first recognize vehicles with a You Only Look Once (YOLO) 
system and then use a Violent Flow descriptor along with a Support Vec-

tor Machine (SVM) to detect their collisions. YOLO-based frameworks 
for car detection have also been proposed by Wang et al. [20], with 
the addition of a Retinex algorithm to improve image quality in chal-

lenging low-light and bad weather conditions. Similarly, the authors 
in [21] illustrate a solution based on Convolutional and Recurrent neu-

ral networks (CNNs and RNNs) to analyze visual features first and then 
explore temporal ones. Saravanarajan et al. [21] focuses on single-car 
crash detection proposing an ensemble of three networks that are in-

volved in feature extraction, identification of regions of interest with a 
Region proposal network (RPN), and a CNN8L network that predicts the 
correct bounding box. Overall, the approaches above generally require 
2

multiple stages of analysis, and environmental conditions can affect the 
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efficiency of these systems. However, when it comes to classifying au-

dio signals, there are significantly fewer research papers. Moreover, the 
classification methods often rely on different visual representations of 
the audio [22,23]. Rovetta et al. [24] propose an SVM-based method 
to identify outliers in sound streams, such as car crashes, and a deep 
neural network to classify the detected events. Sammarco et al. [25]

present Crashzam, an audio-based detector deployed as a smartphone 
application that detects collisions from inside the vehicle and exploits 
features such as accelerometer and GPS data. On the same trail, the 
authors in [26] define a framework based on a Deep Autoencoder and 
a Bidirectional Long Short-Term Memory (B-LSTM) for hazard events 
classification. Arslan et al. [27] developed a DNN system for detect-

ing hazardous sounds like screams and car crashes from Mel-frequency 
cepstrum features.

As regards the studies more focused on acoustic traffic event de-

tection, the work in [28] faces the detection of traffic events in long 
tunnels through the analysis of audio signals. The authors utilize real-

life data collected from a tunnel environment, categorizing audio sam-

ples into various traffic events such as tire friction sound and vehicle 
percussion sound. To enhance efficiency, the paper proposes fast bi-

nary spectral features for rapid classification and adopts a deep neu-

ral network approach to model acoustic characteristics. Comparative 
evaluations against state-of-the-art algorithms, including LSTM neural 
networks and Gaussian mixture models with Mel frequency cepstral co-

efficients, demonstrate the superiority of the proposed spectral features 
in terms of accuracy and efficiency for detecting traffic-related audio 
events. In the investigation conducted in [29], the focus is on inci-

dent response in Australian road tunnels. The paper employs Bayesian 
Networks, a machine-learning technique, to analyze cause-effect rela-

tionships between incident variables. The authors use structure learning 
algorithms and scoring functions to build a network structure validated 
against multiple indicators. Furthermore, parameter learning is applied 
to estimate the probability of consequences. The diagnostic and pre-

dictive reasoning of Bayesian Networks are then leveraged for what-if 
scenarios, identifying variables that significantly impact the severity of 
road tunnel incidents. The findings offer valuable insights for tunnel 
operators to develop mitigation strategies and reduce the number of 
injuries resulting from incidents. The work [30] presents an innovative 
approach to car accident detection and reconstruction named Crashzam. 
Unlike traditional methods relying on accelerometer sensor analysis, 
this paper utilizes sound analysis of car impacts reverberating inside the 
car cabin. The authors introduce an original dataset containing crash 
sounds, outlining the system design, model, and classification based on 
features extracted from the time and frequency domain of the audio 
signal and its spectrogram image. Results indicate the model’s ability 
to accurately identify crash sounds amidst in-car cabin noise, providing 
a promising avenue for smart connected vehicles to enhance accident 
detection and reconstruction. In the system for road accident detection 
proposed in [31], the emphasis is on real-time identification of acci-

dents based on machine learning tools. The system gathers information 
from adjacent vehicles, utilizing machine learning techniques to differ-

entiate abnormal traffic behavior from normal patterns. By examining 
traffic behavior, the system aims to identify potential road accidents 
promptly. This work adds to the growing body of research leveraging 
machine learning for proactive accident detection, contributing to the 
overall goal of enhancing road safety.

The literature also features a variety of studies that exploit the 
MIVIA dataset as a test bed. For instance, in order to analyze multiple 
representations of the audio data, Mnasri et al. [32] explore the use of 
a Fully-connected Neural Network (FCNN) and an LSTM, exploiting an 
autoencoder to initialize the network weights. Analogously, Strisciuglio 
et al. [33] propose a new feature extractor called Combination of Peaks 
of Energy (COPE) combined with an SVM classifier. Other works employ 
dedicated CNN architectures: Foggia et al. [34] exploit MobileNetv2, a 
network designed to efficiently run on embedded devices, while Greco 

et al. [35] leverage on a 21-level CNN, AReN, for recognizing unusual 
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Fig. 1. Summary of the pre-processing, spectrogram extraction, and projection steps.
sounds in audio tracks represented as gammatonegrams, i.e. gammatone-

filtered spectrograms.

3. Methods

The proposed method aims to detect and classify road hazard events 
from audio signals through visual analysis of the corresponding spectro-

gram using a Convolutional Neural Network (CNN). Precisely, the novelty 
of the proposed method consists of adopting a multi-representational ap-

proach which exploits information from its intensity projections on the 
time and frequency axes in addition to considering the spectrogram of 
the observed signal, in a synergistic and combined way. To accomplish 
this task, we introduce a custom network architecture hereafter referred 
to as Multi-Input CNN. Along with this solution, the pre-processing step 
also plays a relevant role, as better discussed in the following Sec-

tion 3.1.

3.1. Pre-processing

The pre-processing of the data involves both the source audio signals 
and their graphical representation. It mainly aims to prepare the data 
for its use by the proposed Deep Learning method by i) preserving some 
valuable features such as signal strength and ii) reducing the size and 
range of values to speed up the processing.

More in detail, the first step concerns the source audio files: for 
each of them, we apply an audio normalization step, scaling the au-

dio signal to bring the highest amplitude peak (in absolute value) to 
the maximum possible. Next, in order to feed the neural network with 
fixed-size inputs, in line with the authors of the dataset we sequentially 
extracted 3-second-long audio frames by means of a sliding window, 
with a 1-second shift between, so that each frame shares two-thirds of 
the information with the previous one, in order to prevent the event 
from being cut off at significant points and to ease detection of events 
that may occur at the extremes of the frames.

The resulting frames are then used to generate the visual representa-

tion of the audio, i.e., its spectrogram. It represents the signal spectrum 
as a function of frequency and time, obtained by applying the Short-

Time Fourier Transform (STFT). In formulae (polar form):

𝑋[𝑘,𝑚] =
𝑁−1∑

𝑛=0
𝑤[𝑛] ⋅ 𝑥[𝑛+𝑚𝐻] ⋅ 𝑒−

2𝑖𝜋
𝑁

𝑘𝑛
(1)

where k is the frequency index, m the frame index, N the frame size, H
the hop size, 𝑥[𝑛 +𝑚𝐻] the mth frame of the source signal and 𝑤[𝑛] the 
window function.

In short, we first divided the signal into segments; then, we applied 
the Fast Fourier Transform to them. As a result of this conversion, each 
audio frame goes from being a one-dimensional vector to a 2D matrix 
in order to apply image processing techniques. On the practical side, 
the extraction of spectrograms from the dataset sources involved the 
use of the matplotlib library with default values including a Han-
3

ning window with NFFT of 256 samples and overlap of 128 samples, 
applied on 3-second frames sampled at 32 kHz (96,000 samples per 
frame). Resulting spectrograms were resized to a dimension of 50x300 
pixels to speed up the following pre-processing steps and reduce the 
number of parameters required by the neural network. In the succeed-

ing steps, we normalized the pixel intensity values in the range [0,1] 
and standardized. We applied both operations in feature-wise mode 
and computed the parameters on the set of spectrograms that compose 
the dataset rather than on the single ones, as would happen with a 
sample-wise approach. Indeed, preliminary empirical tests reported a 
significant increase in false positives when adopting min-max sample-

wise normalization.

As a final pre-processing step, we applied noise reduction to the 
spectrograms through a Gaussian filter with a 3x3 kernel size.

3.2. Intensity projections

The spectrogram images obtained as a result of the pre-processing 
operations described in Section 3.1 constitute one of the inputs used 
to feed our neural model. However, the peculiarity of the proposed 
method is to exploit additional representations of the data to make the 
Deep Learning algorithm better able to discern between normal back-

ground noise and dangerous events. Hence, from the basic spectrogram, 
the proposed approach extracts two additional representations obtained 
by performing different intensity projections on it [36]. This approach 
represents a scientific visualization method commonly adopted when 
manipulating 3D data aimed to project voxel values to a 2D plane im-

age, especially in the medical domain. In the context of this work, the 
size of the spectrograms is reduced from a 2D image to one-dimensional 
vectors for each applied projection. Specifically, we applied the projec-

tions along the vertical (frequency) and horizontal (time) axes in three 
different modes, namely: i) the Minimum Intensity Projection (MinIP); 
ii) the Maximum Intensity Projection (MIP); and iii) the Average Intensity 
Projection (AIP), denoted as it follows:

𝑀𝑖𝑛𝐼𝑃𝑖 =𝑚𝑖𝑛𝑗 (𝐼𝑖,𝑗 ) (2)

𝑀𝐼𝑃𝑖 =𝑚𝑎𝑥𝑗 (𝐼𝑖,𝑗 ) (3)

𝐴𝐼𝑃𝑖 =
1
𝑁

𝑁∑

𝑗=0
𝐼𝑖,𝑗 (4)

where 𝐼𝑖,𝑗 is the intensity of the input image at the pixel position (𝑖, 𝑗); 
𝑚𝑖𝑛𝑗 and 𝑚𝑎𝑥𝑗 represent the minimum and maximum values of pixels 
in row 𝑖, respectively; 𝑁 is the total number of columns (i.e., the x-axis

size) of the input image. As a result, we obtain three one-dimensional 
vectors, one for each projection, stacked on a new 2D matrix, one for 
each axis.

Note that the matrix obtained from the projection of the second axis 
is resized to reduce dimensionality and computation costs when applied 
to the convolutional layers of the proposed network. Fig. 1 comprehen-
sively summarizes the pre-processing above and the projection steps.



Digital Signal Processing 147 (2024) 104431A.S. Podda, R. Balia, L. Pompianu et al.

Fig. 2. Diagram of the proposed special-purpose Multi-Input CNN architecture.
3.3. Multi-input CNN architecture

The core of our proposed method consists of a custom Multi-Input 
Convolutional Neural Network focused on processing and classifying 
graphical representations of an audio signal, i.e. a native spectrogram 
alongside two derived inputs obtained through its intensity projections 
(IPs). The architecture, illustrated in Fig. 2, consists of three pipelines 
that independently process each received input. Each path’s intermedi-

ate outputs are concatenated to obtain an ensemble step that operates in 
the last fully connected layer and returns the final prediction in the form 
of probability values associated with the three possible classes, namely

background_noise (BN), car_crash (CC), and tire_skiddings
(TS).

The first pipeline, involved in the full spectrogram processing, in-

cludes eight 2D convolutional layers with a 3x3 receptive field (except 
for the last one, detailed below), characterized by a path of feature map 
expansion and contraction to reduce computational cost growth. The 
main pattern of such a pipeline consists of three blocks, each composed 
of two convolutional steps followed by a Max Pooling layer. The output 
of each pooling layer is both i) passed to the first convolutional layer of 
the subsequent block and ii) concatenated with the output of the sec-

ond convolutional layer of that block, implementing a skip connection

technique to limit the vanishing/exploding gradient problems [37]. As 
mentioned before, the last layer provides a 1x1 kernel to project the 
feature map into a smaller space and reduce the number of parameters 
required in the two final fully connected layers, composed of 2048 and 
128 nodes, respectively.

On the other hand, the two pipelines that handle the time and 
frequency IPs share a similar structure. Both include a total of 4 convo-

lutional layers. Two of them are of type 1D and independently process 
the rows of the input. Then, a pooling layer halves the size of the fea-

ture map on the width axis, producing an intermediate output that is 
both processed by the two subsequent 2D convolutional layers and con-

catenated to their output. Such a concatenation is then flattened and 
processed by two consecutive fully connected layers, the first providing 
1024 nodes, followed by a smaller one with 4 or 8 nodes, depending 
on whether the processing pipeline involves the time or frequency IP, 
respectively.

The outputs of the above pipelines are exploited by the fully con-

nected layer mentioned before, providing three output nodes (corre-

sponding to the number of classes) and employing a Softmax activation 
4

function to guarantee that returned values are in the range [0,1] and 
their sum equals 1. We point out that a Batch Normalization layer fol-

lows each convolutional layer in our Multi-Input CNN and exploits a 
Rectified Linear Unit (ReLU) activation function.

4. Experimental setup

We implemented the proposed methods in Python 3.8, by employing 
the following Audio Processing and Machine/Deep Learning libraries:

pyaudio 0.2.11, pydub 0.25.1, librosa 0.9.1, matplotlib 3.5.1,

numpy 1.21.5, keras 2.7.0, and tensorflow 2.7.0. We ran the exper-

iments on a desktop computer with a 4.10 GHz CPU, 32GB RAM, and 
an Nvidia GeForce GTX 1060 Max-Q GPU equipped with 6GB dedicated 
DDR5 RAM and 1280 CUDA cores.

4.1. Dataset

We conducted the experiments on a publicly available dataset 
known as MIVIA Road Audio Events ([38,39]). The basic idea behind 
this dataset stems from the fact that, although car accidents are rare 
events, the sounds associated with them can be distinctive and often 
carry specific characteristics. Breaking and deforming sounds are com-

mon factors, often accompanied by the shattering of glass in accidents 
involving windows or windshields. The deformation of metal and other 
materials generates additional sounds, including creaking, bending, and 
crumpling noises. Moreover, before the impact, there may be the un-

mistakable screeching of tires as vehicles attempt to stop or change 
direction. Also, human sounds, such as yells or screams, may punctu-

ate the auditory landscape in some cases, reflecting the emotional and 
alarming nature of the situation. In particular, in traffic surveillance 
scenarios, the events of interest may occur at varying distances from 
the microphone, leading to different signal-to-noise ratio levels. Addi-

tionally, these events often blend with complex backgrounds comprising 
various sounds typical of indoor and outdoor environments (e.g., house-

hold appliances, crowd cheering, conversations, traffic noise). Hence, 
the MIVIA dataset is structured to present each audio event across six 
signal-to-noise ratio levels (5 dB, 10 dB, 15 dB, 20 dB, 25 dB, and 
30 dB), layered with diverse combinations of environmental sounds to 
simulate different ambient settings.

More in deep, such a dataset distinguishes between car crashes and 
tires skidding and consists of 57 audio files 60 seconds long and sam-
pled at 32 kHz, recorded with an Axis P8221Audio module and an 
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Fig. 3. Examples of spectrograms extracted from dataset’s positive events: (a) car crash, (b) tire skidding.
Axis T83 omnidirectional microphone for audio surveillance applica-

tions. For the purpose of this work, we clarify that the sampling rate 
was not adjusted, to let us compare the results with literature competi-

tors; however, downsampling might marginally speed up the real-time 
preprocessing steps, without a significant impact on performance, al-

though main computations are applied to the spectrogram. These files 
contain 400 events, of which 200 are labelled with class car_crash

and 200 with class tire_skidding. Fig. 3 shows examples of spectro-

grams for car crashes (on the left) and tires skidding (on the right). The 
files are pre-organized into four folders with 100 events each in view 
of the cross-validation experiments, which we adopted as suggested by 
the dataset authors. With this approach, we used three folds for train-

ing the network in each iteration, and we divided the fourth one into 
two equal parts, respectively, used as validation and test sets.

4.2. Metrics

In order to quantitatively validate the performance of the proposed 
method and adequately compare it with the existing works, we adopted 
the same experimental protocol proposed by the dataset authors [40], 
which involves the following metrics:

• the True Positive Rate (TPR), i.e. the ratio of correctly identified 
positive events (𝑇𝑃 , true positives) over all the positive events (𝑃 );

𝑇𝑃𝑅 = 𝑇𝑃∕𝑃 (5)

• the False Positive Rate (FPR), defined as the ratio of events classified 
as positive when only background noise frames are present;

𝐹𝑃𝑅 = 𝐹𝑃∕𝑃 (6)

• the Miss Rate (MR), computed as the number of undetected events 
(𝐹𝑁 , false negatives) over the total number of positive events (𝑃 );

𝑀𝑅 = 𝐹𝑁∕𝑃 (7)

• the Error Rate (ER), i.e. the number of misclassified events over the 
total number of positive events.

𝐸𝑅 = (𝐹𝑁𝑇𝑆 + 𝐹𝑁𝐶𝐶 )∕𝑃 (8)

where 𝐹𝑁𝐶𝐶 are the events classified as car_crash when the 
correct label was tire_skidding and 𝐹𝑁𝑇𝑆 are the events clas-
5

sified as tire_skidding when the correct label was car_crash.
Additionally, we also provide the Receiver Operating Characteristic

(ROC) curves and the Area Under the Curve (AUC) measures to compare 
the performance of the proposed multi-representational model against 
the single-input CNN implementations.

4.3. Hyperparameters

For our experiments, we adopt the following hyperparameters: the 
SGD optimizer with a learning rate set to 0.01 and momentum set to 
0.89, the Mean Logarithmic Squared Error (MLSE) loss function, a batch 
size of 16 samples and 25 training epochs. In addition, to avoid over-

fitting, we exploit an early stopping strategy to interrupt the training 
process if the validation loss does not improve within 15 epochs of pa-

tience and a checkpoint callback to retrieve the model with the lowest 
validation loss cost at the end of the training process.

5. Results and discussion

We experimentally validated the proposed system on a dataset de-

signed explicitly for road surveillance applications known as MIVIA 
Road Audio Events, described in Section 4.1. We obtained experimen-

tal results by applying a 4-fold cross-validation strategy provided by 
the dataset subdivision and sharing the same training hyperparame-

ters among the models. We assessed the performance of the proposed 
multi-representational approach in two regards: its contribution com-

pared to single-input methods and its competitiveness against relevant 
benchmarks from existing literature.

5.1. Multi-input pipeline vs. single-input approaches

Table 1 illustrates the results of comparing the proposed multi-

representative approach with single-input networks. For clarity, note 
that the single-input networks share the same structure as the subnets 
embedded within the multi-input network described in Section 3.3, and 
each of them makes use of a classification head of 1024, 32, and 3 
nodes. The results show a significant drop in performance for the net-

work associated with intensity projection on the time axis. In particular, 
the approach did not detect all events correctly, leading to a high rate of 
missed events with 7.32% MR and multiple events misclassified, despite 
being recognized as events of interest with 5.85% ER. We expected this 
behavior as the type of event is more easily distinguished when looking 
at the frequencies that make up the event, even for a human.

This is done in the classification of events using the intensity pro-
jections of the frequency axis, by which the model is able to recognize 
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Table 1

Results obtained by considering different architectures and input data types on the MIVIA Road Audio Events dataset 
(†: higher is better; ‡ : lower is better).

Method Data Type ACC† TPR† FPR‡ MR‡ ER‡

CNN Time IP 77.97 ± 8.01 86.81 ± 8.01 3.92 ± 2.55 7.32 ± 6.27 5.86 ± 2.56

CNN Frequency IP 83.52 ± 2.24 97.07 ± 3.51 4.37 ± 2.16 1.95 ± 4.60 0.98 ± 0.83

CNN Spectrogram 90.03 ± 3.24 98.53 ± 0.84 1.94 ± 2.35 0.97 ± 0.97 0.50 ± 0.86

Voting Spectrogram + IPs 90.09 ± 3.19 98.53 ± 2.35 1.44 ± 1.48 0.97 ± 0.97 0.50 ± 0.86

Multi-Input CNN Spectrogram + IPs 90.64 ± 2.65 100.00 ± 0.00 0.96 ± 1.66 0.00 ± 0.00 0.00 ± 0.00

Fig. 4. Mean of ROC curves over 4 folds.
97.07% of the positive events in the test set, with a ratio of ER and MR 
of 0.98% and 1.95% respectively, but a higher number of false posi-

tives than any other model with 4.37% FPR. Considering that the data 
is based on a projection of the spectrograms, the results were higher 
than we expected. In fact, the network dedicated to the whole spectro-

gram shares a similarly high recognition rate of 98.53%, but it performs 
better in terms of other metrics, achieving an ER and MR under 1% and 
an FPR of 1.94%. We obtained even better predictive capabilities by 
combining all these networks in the multi-input model that works as 
an ensemble with a shared classification head, resulting in 100% recog-
6

nition with consequent no missed or misclassified events and a false 
positive ratio of only 0.96%, surpassing the performance of soft voting 
of the three single-input models, which results differ from the perfor-

mance of the spectrogram-based CNN with only a reduction in false 
positives.

In Fig. 4, Receiver Operating Characteristic (ROC) curves, analyti-

cal tools used to evaluate the performance of classifiers, are presented. 
Note that these evaluations are independent of the experimental proto-

col proposed by the authors of the MIVIA Road Audio Events dataset. 
Each distinct curve within the illustration corresponds to a specific class 
category, thus adopting a “one-versus-all” strategy underlying class-
based analysis. We ensure statistically robust results by implementing 



A.S. Podda, R. Balia, L. Pompianu et al.

Table 2

AUC values for different classes and architectures combinations (average of 
4 folds).

Approach Class BN Class CC Class TS

Multi-Input CNN 0.958 ± 0.022 0.964 ± 0.022 0.970 ± 0.021

Spectrogram-based CNN 0.954 ± 0.030 0.961 ± 0.029 0.970 ± 0.027

Time-IP-based CNN 0.920 ± 0.044 0.928 ± 0.044 0.913 ± 0.047

Frequency-IP-based CNN 0.907 ± 0.017 0.925 ± 0.025 0.935 ± 0.026

this strategy and applying 4-fold cross-validation. The shaded regions 
surrounding each curve serve as visual indicators, effectively depicting 
the confidence intervals surrounding the class-specific results. Table 2

summarizes the values reported in Fig. 4, to facilitate reading.

Consistent with the comprehensive outcomes elaborated in Table 1, 
it becomes discernible that the proposed multi-input methodology re-

tains an advantage over its single-input counterparts. This distinction is 
particularly evident through the encapsulated Area Under Curve (AUC) 
values, briefly summarizing the holistic classifier performance.

Specifically, the multi-input approach achieves commendable AUC 
values, registering at 0.958 for the BN class, 0.964 for the CC class, and 
an elevated 0.97 for the TS class. A noteworthy observation arises from 
comparing these results with those derived from the single-input strate-

gies. Among these, the spectrogram analysis-driven approach emerges 
as the most robust, yielding commendable AUC values of 0.954 for the 
BN class, 0.961 for the CC class, and an equivalent of 0.97 for the 
TS class. However, it is important to note, that this method reveals 
observable statistical variability, indicated by a comparatively more sig-

nificant standard deviation of approximately 0.029, in contrast to the 
narrower 0.022 observed within the results of the multi-input method.

In Fig. 4, we illustrate the Receiver Operating Characteristic (ROC)

curves to evaluate single and multi-input classifiers outside the exper-

imental protocol proposed by the MIVIA Road Audio Events dataset 
authors. Each colored curve is associated with one class by employing a 
one-vs-all strategy and by averaging the results obtained over the 4-folds 
(the colored area represents the confidence interval of the individual re-

sults for each class): the x-axis reports the FPR values, and the y-axis the 
TPR values.

The results, consistent with Table 1, show an overall superiority of 
the proposed multi-input method, with an Area Under Curve (AUC) of 
0.958 for the BN class, 0.964 for the CC class and 0.97 for the TS class. 
With regard to the single-input methods, the one based on spectrogram 
analysis achieves the best performance, reporting AUC values of 0.954 
for the BN class, 0.961 for the CC class and 0.97 for the TS class. It is 
important to note, however, that this method reveals observable statis-

tical variability, indicated by a comparatively larger standard deviation 
of approximately 0.029, in contrast to the narrower 0.022 observed 
within the results of the multi-input method.

In Fig. 5, we summarize the results of the ROC curves by averaging 
across classes, providing an overall view of the performance of all the 
classifiers discussed confirming that the multi-input network records 
the best AUC value at a lower variability of results.

5.2. Comparison against state-of-the-art approaches

Table 3 below compares the proposed method and state-of-the-art 
competitors on the MIVIA Road Audio Events dataset. Specifically, we 
consider AReN [35] and COPE [33], which mainly perform a gamma-

tonegram analysis, and MobileNet [34], which instead focuses on the 
spectrogram. Among these, as outlined in the previous Section 2, AReN 
is more recent and performs better, as it shows 100% True Positive Rate 
and 2.01% in terms of False positive Rate on the MIVIA dataset. It also 
obtains 0% in terms of Miss Rate and Error Rate. This result appears to 
be slightly worse for MobileNet, which, however, with 99.5% TPR, 0% 
Miss Rate and 0.5% Error Rate is still very effective (considering that it 
7

is developed for deployment on embedded devices, therefore equipped 
Digital Signal Processing 147 (2024) 104431

Fig. 5. Comparison of the ROC Curves for the considered architectures and 
input data types combinations.

Table 3

Results comparison between the proposed approach and the relevant lit-
erature competitors († : higher is better; ‡ : lower is better).

Method Data Type TPR† FPR‡ MR‡ ER‡

AReN [35] Gammatonegram 100.00 2.01 0.00 0.00

MobileNet [34] Spectrogram 99.50 3.76 0.00 0.50

COPE [33] Gammatonegram 94.00 3.95 4.75 1.25

Proposed Spectrogram + IPs 100.00 0.96 0.00 0.00

with limited hardware). In contrast, with a TPR of 94%, COPE seems 
to be less performing. Overall, the proposed method, based on a multi-

representative analysis of the spectrogram and its intensity projections, 
proved to be in line with the state-of-the-art solutions in this case study, 
leading to an improvement given by the halving of false alarms. We con-

jecture that this aspect is related to the increased ability of the proposed 
pipeline to better understand the complex input representation of the 
audio stream. In fact, it also emerges from the result of previous Table 1

that the application of a simple ensembling technique (i.e., the voting) 
on the output of single-input models, which separately analyze the spec-

trogram and its intensity projections, does not achieve the performance 
obtained instead by means of the proposed custom architecture, which 
shows a greater ability to identify the audio anomalies and reduce the 
false positives, due to its synergistic behavior.

We notice that, although several seminal work in literature [41–43]

point out that the use of spectrograms and/or other 2D features might 
be more effective in classifying audio signals, many existing studies 
address the problem stated in this work through end-to-end systems 
based on 1D-based audio analysis methods. Hence, for the sake of com-

pleteness, we also decided to compare the performance of our solution 
against two public 1D-CNN models [44,45].

Table 4 shows the results of such a comparison. The reported val-

ues were obtained by training the aforementioned models on the MIVIA 
dataset’s raw signals, with the same fragmentation used for the spectro-

gram extraction. The hyperparameters used were the Adam optimizer, 
the binary cross-entropy loss function, and a batch size of 32 samples. Al-

though such models demonstrate a good performance in the analysis of 
the raw input, the obtained results seem to confirm the literature evi-

dence, suggesting that these methods would not be able to outperform 

the 2D-based approaches proposed in this work.
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Table 4

Comparison between our approach (best configurations) and 1D convolution models for audio classification († : 
higher is better; ‡ : lower is better).

Method Data Type ACC† TPR† FPR‡ MR‡ ER‡

Mansar [44] Raw Signal 85.88 ± 2.93 96.10 ± 2.71 2.89 ± 3.96 2.92 ± 2.15 0.98 ± 0.98

Abdoli [45] Raw Signal 87.50 ± 3.31 92.19 ± 3.54 0.97 ± 0.97 5.37 ± 1.55 2.43 ± 2.09

Proposed Spectrogram 90.03 ± 3.24 98.53 ± 0.84 1.94 ± 2.35 0.97 ± 0.97 0.50 ± 0.86

Proposed Spectrogram + IPs 90.64 ± 2.65 100.00 ± 0.00 0.96 ± 1.66 0.00 ± 0.00 0.00 ± 0.00
5.3. Prototype implementation

A prototype of the described pipeline - denoted with CARgram - im-

plemented in Python 3.8, and which exploits the model pre-trained on 
the MIVIA dataset, has been deployed as part of an existing AI-based 
urban video surveillance system, under the project SafeSpotter.1 Such a 
system leverages on a series of 4 fixed monocular cameras to monitor 
dangerous traffic junctions in a municipality (∼ 20, 000 inhabitants) of 
the metropolitan city of Cagliari (Italy), in order to determine anoma-

lies, hazardous behaviors and accidents.

In such a system, the captured video streams are interpreted by a 
Computer Vision-based artificial intelligence module based on YOLO

[46] and heuristic algorithms, deputed to identify the aforementioned 
anomalies. However, the accident recognition component has from the 
beginning been prone to false positives: on the one hand, this is a con-

sequence of choosing to minimize missed alarms (in order to improve 
rescue response time); on the other hand, it is due to the fact that oc-

clusions and perspective make it complex to determine vehicle and/or 
pedestrian collision with high accuracy.

In this context, CARgram was used to support the visual AI mod-

ule, by analyzing the contextual audio stream acquired by the cameras. 
When an incident type anomaly was detected, the live output of CAR-

gram was then evaluated in order to confirm (or not) the detection of a 
hazardous sound.

Although the prototype was evaluated over a period of 6 months, 
with only one incident occurring (and correctly identified by the 
SafeSpotter system), during this period the integration of the CARgram 
module resulted in a reduction of false positives associated with acci-

dent alerts by ∼ 10%. Despite the limited time window and case history 
of events, this provided promising insights into the robustness of the 
proposed pipeline even in a real-world use scenario.

6. Conclusions

In urban surveillance, there is an ever-increasing need for advanced 
scientific and technological solutions to ensure higher and higher levels 
of service quality and safety for citizens. In this work, we have proposed 
an innovative method that exploits Deep Learning and Computer Vision 
techniques for automatically detecting abnormal traffic events (partic-

ularly collisions and hard braking) from audio signals acquired through 
environmental microphones. In particular, this work is the first to pro-

pose a multi-representational analysis of the information from the audio 
signal, exploiting in a synergistic mode its spectrogram and the intensity 
projections on the time and frequency axes derived from it. There-

fore, for this purpose, we proposed a custom neural network (called 
Multi-Input CNN), whose architecture is designed to process the above 
signal representations synergistically. The results obtained through ex-

perimental validation on the public MIVIA dataset, with true positive 
rate values of 100% and false positive rate values of 0.96%, confirm the 
overall goodness of the proposed approach, as well as its superiority 
to both the respective single-input methods and literature competitors. 

1 https://monserrato .etrasparenza .it /index .php ?id _oggetto =11 &id _doc =
8

380586.
Some limitations remain. First, we highlight that the MIVIA dataset cov-

ers only two classes of hazardous events, and the analysis thus requires 
to be extended to more general contexts. Furthermore, the proposed so-

lution is oriented toward fixed urban settings and, therefore, needs to 
be tested, e.g., on autonomous driving vehicles: this represents an im-

portant future research direction.
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