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Abstract. Detecting 3D objects in images from urban monocular cam-
eras is essential to enable intelligent monitoring applications for local
municipalities decision-support systems. However, existing detection
methods in this domain are mainly focused on autonomous driving and
limited to frontal views from sensors mounted on the vehicle. In con-
trast, to monitor urban areas, local municipalities rely on streams col-
lected from fixed cameras, especially in intersections and particularly
dangerous areas. Such streams represent a rich source of data for appli-
cations focused on traffic patterns, road conditions, and potential haz-
ards. In this paper, given the lack of availability of large-scale datasets of
images from roadside cameras, and the time-consuming process of gen-
erating real labelled data, we first proposed a synthetic dataset using the
CARLA simulator, which makes dataset creation efficient yet acceptable.
The dataset consists of 7,481 development images and 7,518 test images.
Then, we reproduced state-of-the-art models for monocular 3D object
detection proven to work well in autonomous driving (e.g., M3DRPN,
Monodle, SMOKE, and Kinematic) and tested them on the newly gen-
erated dataset. Our results show that our dataset can serve as a refer-
ence for future experiments and that state-of-the-art models from the
autonomous driving domain do not always generalize well to monocular
roadside camera images. Source code and data are available at https://
bit.ly/monocular-3d-odt.

Keywords: Dataset · Object Detection · 3D Vision · Roadside
Camera

1 Introduction

Monocular cameras play an important role in urban areas, in which they are
commonly used in intersections and other high-risk locations to capture valu-
able data. Detecting objects in images from monocular cameras is critical for
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developing intelligent monitoring applications that can assist local municipali-
ties in making timely and informed decisions [1–4,15,16]. With such applications,
governments can obtain real-time and accurate information regarding traffic pat-
terns, road conditions, and potential hazards. Differently from traditional 2D
object detection methods [8,18,21–24,30,31,42], applying 3D object detection
approaches offer significant advantages. By providing a more complete under-
standing of the scene and enabling the detection of occluded objects, they can
improve the accuracy and reliability of object detection in complex environ-
ments, and better describe object pose and shape. Usually approaches that rely
on monocular cameras are also less expensive and can be easily deployed in urban
areas, if compared to the more complex LIDAR methods [12,20,32,38]. However,
3D object detection from monocular cameras still poses several challenges and
shows significant limitations. First, the lack of depth information in 2D images
makes it difficult to accurately estimate the size and position of objects; second,
environmental factors, such as occlusions, shadows, and weather conditions, can
also affect their operational accuracy and reliability.

To overcome such issues, recent advances in autonomous driving solutions
have shown promising results, among which the most noteworthy works are
M3DRPN [5], Kinematic [6], SMOKE [25], Monodle [26], and FOC3D [36],
to name a few. Additionally, a growing number of datasets [7,10,17,19,27–
29,35] are being adopted to further improve the effectiveness of this technol-
ogy. Notwithstanding these advancements, this field remains an active area of
research, and further investigation is necessary to strengthen the performance
of monocular camera-based 3D object detection models. Applying such models
developed for autonomous driving to roadside cameras is possible, since these
cameras usually provide a wider coverage area and greater robustness to occlu-
sion, remain stable for extended periods of time, and are more suitable for event
recognition. However, since the scenario is different from that of vehicle use,
several questions on their generalizability are open. To improve performance in
this context, novel datasets, such as Ko-PER [34], Rope3D [39], BAAI-VANJEE
[13], BoxCars [33], and DAIR-V2X [41] have been proposed, but most of them
are not public.

Motivated by the above limitations, in this paper, we designed a novel syn-
thetic dataset, hereafter named as MonoRoadCam, with the twofold aim of: a)
facilitating the adaptation of 3D object detection methods for use on roadside
cameras; b) examine in this context the performance of existing methods bor-
rowed from autonomous driving, in a consistent and unified setting. To generate
such a dataset, we opted for the CARLA simulation environment [14], for its abil-
ity to provide complex data that mimics real-world scenarios. We also employed
the widely adopted KITTI format [17] in order to guarantee standardization
and reproducibility of the evaluation tests. Our contribution is threefold:

– We generated a synthetic dataset for monocular 3D object detection from
roadside cameras using the CARLA simulator, compliant with the KITTI
format. To provide a fair evaluation, we removed the overlap between the
training and validation sets by excluding sequence frames;
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– We verified the reproducibility of existing state-of-the-art monocular 3D
object detection approaches, originally proposed for autonomous driving, on
the roadside context, sharing our framework publicly.

– We conducted a comparative study between 3D object detection datasets
from roadside and frontal cameras, observing that state-of-the-art solutions
from the autonomous driving domain result in significant potential yet crucial
limitations when applied to monocular roadside camera images.

The rest of this paper is organized as follows. Section 2 outlines the research
methodology. Section 3 illustrates the obtained results. Finally, Sect. 4 concludes
the paper, highlighting the prominent future research directions.

2 Research Methodology

In this section, we describe the reproducibility process, which involves (i) sur-
veying the existing datasets and 3D object detection methods for monocular
cameras; (ii) carrying out an analysis of the context, also by collecting the orig-
inal source codes and adapting them to our unified framework; (iii) generating
the MonoRoadCam dataset and adopt it for evaluating the reproduced models.

2.1 Problem Formulation

Given a set of training images I = {i1, i2, ...in} and calibration information P of
a monocular camera, where P represents the projection matrix, each image i ∈ I
is represented as a set of 2D projected points. Suppose that B = {b1, b2, ...bm}
represents a set of bounding boxes for all objects in the image in 3D space,
where each bi ∈ B included object type C, in addition to T = (tx, ty, tz),
D = (dx, dy, dz), and O = (ϑ, Φ, ϕ) which represent the centroid, dimension, and
orientation of the object, respectively. The goal is to optimize the parameter θ
in order to solve f(i, P, θ) = B ∀i ∈ I. Usually, convolution neural networks are
used to provide the map, and the optimization is run on θ.

2.2 Paper Collection

In order to gather existing 3D datasets for the study, a systematic search has been
conducted about the recent publications in computer vision-related top-tier con-
ferences and journals, such as CVPR, ECCV, ICCV, and IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI). Additionally, we searched
relevant repositories, such as the Waymo Open Dataset, the KITTI Vision
Benchmark Suite, and the ApolloScape dataset. Our search keywords included
3D object detection, monocular 3D object detection, roadside 3D dataset.

Not only datasets providing 3D object information using RGB cameras have
been taken into consideration, but also those that used other methods in addition
to RGB. Additionally, we limited our search to datasets designed for traffic mon-
itoring using monocular cameras. We excluded datasets that focused on other
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Table 1. Comparison of existing publicly available datasets for autonomous driving
(AD) and roadside object detection, including their year of release, database type,
whether the data is real or simulated, range of data, RGB resolution, number of RGB
images, number of 3D boxes, presence of rain/night data, and availability to the public.
The last row represents the dataset we propose in this paper.

Dataset Year Type Source Range Resolution Images 3D Boxes Rain/

Night

Public?

Kitti [17] 2013 AD Real 70m 1392 × 512 15K 80K No/No Yes

KoPER

[34]

2014 Roadside Real – 656 × 494 – – No/No Yes

Apollscape

[19]

2018 AD Real 420m 3384 × 2710 144K 70K No/Yes Yes

BoxCars

[33]

2018 Roadside Real – 128 × 128 116K 116K No/No Yes

nuScenes

[7]

2019 AD Real 75m 1600 × 900 1.4M 1.4M Yes/Yes Yes

Argoverse

[10]

2019 AD Real 200m 1920 × 1200 22K 993K Yes/Yes Yes

H3D [28] 2019 AD Real 100m 1920 × 1200 27.7K 1M No/No Yes

A*3D [29] 2020 AD Real 100m 2048 × 1536 39K 230K Yes/Yes Yes

Waymo

Open [35]

2020 AD Real 75m 1920 × 1080 230K 12M Yes/Yes Yes

DAiRV2X

[41]

2021 AD/Other Real 200m 1920 × 1080 71K 1.2M –/Yes No

BAAI-

VANJEE

[13]

2021 Roadside Real – 1920 × 1080 5K 74K Yes/Yes No

ONCE [27] 2021 AD Real 200m 1920 × 1080 7M 417K Yes/Yes Yes

Rope3D

[39]

2022 Roadside Real 200m 1920 × 1200 50K 1.5M Yes/Yes No

Ours 2023 Roadside Simulated 150m 1280 × 384 15K 39.345K No/Yes Yes

tasks or used different data collection methods. After conducting the search and
filtering process, we identified 13 relevant datasets that met our criteria for
inclusion in our study. Among them, 8 datasets were related to autonomous
driving focusing on the frontal view of the road, 4 datasets were based on road-
side cameras, and 1 dataset focused on autonomous driving and infrastructure.
Table 1 summarizes their general characteristics.

As a second step of our study, we surveyed papers proposing monocular 3D
object detection methods. Despite their efficiency, we excluded models that rely
on LiDAR and point cloud data [12,20,32,38] from our study, given our focus
on contexts with only monocular cameras. Additionally, we excluded models
that heavily rely on external sub-networks for performing depth estimation [37]
or pseudo point cloud generation [11], given the need of efficiency. Similarly to
the dataset selection process, we targeted works from top-tier conferences and
journals that propose an approach for monocular 3D object detection and that
make that approach reproducible by sharing the source code. Based on these
criteria, we were able to select four models: M3DPRN, Kinematic, SMOKE, and
Monodel. All of them are autonomous driving-based models. During our search,
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we also found two roadside models leveraging monocular cameras [43] and [9],
but unfortunately the authors did not provide any source code.

2.3 Research Context Analysis

Based on datasets and the monocular 3D object detection models we have exam-
ined, we observed that approximately about 68% of them focused on autonomous
driving, assuming that DAiRV2X is an autonomous driving dataset. However we
also found that only 32% of the work focused on roadside cameras. These models
can be useful in various applications, such as sports analysis, traffic monitoring,
security systems, road safety, and wildlife monitoring. In addition to this, we
found that this area lacks publicly available datasets until the date of this study.
Rope3D [39], DAiRV2X [41], BAAI-VANJEE [13] are not publicly available. On
the other side, we analyzed the training and testing datasets used by the state-
of-the-art models surveyed in our study. From Table 2, we observed that most of
surveyed 3D monocular object detection models still rely on the KITTI dataset
for their training and testing, despite the availability of diverse publicly available
datasets for autonomous driving, especially those that focus on the frontal view.
This might be attributed to either the pioneering role of KITTI.

Table 2. Overview of the considered 3D object detection methods.

Method Year Type1 Status2 Datasets Datasets size3

M3DRPN [5] 2019 AD R KITTI [17] 3,712-3,769-7,518

Kinematic [6] 2020 AD R KITTI [17] 3,712-3,769-7,518

SMOKE [25] 2020 AD R KITTI [17] 3,712-3,769-7,518

Monodle [26] 2021 AD R KITTI [17] 3,712-3,769-7,518

FCOS3D [36] 2021 AD R nuScenes [36] 700-150-150∗

UrbanNet [9] 2021 Roadside R Synthetic Only [9] 500-0-100

Zou et al. [43] 2022 Roadside R Real + Synthetic [43] Synthetic: 64,000/Real: 8,000

Type1: AD - Autonomous driving model; Roadside - Roadside model

Status2: R - Reproducible model; R - Non-Reproducible.

Datasets size3: Training set - Validation set - Testing set.
∗ These values represent the ratio of the scenes instead of the dataset size.

Given all this information, and due to the lack of publicly available datasets
for roadside 3D object detection and the convenience of using the same for-
mat as in KITTI, we opted to generate our own synthetic dataset with a focus
on roadside 3D object contexts and to format it as the KITTI dataset. This
allowed us to evaluate state-of-the-art methods (M3DRPN, Monodle, SMOKE,
Kinematic - see Table 2) with our dataset smoothly. We chose synthetic data as
a reference since it is cost-effective in a preliminary phase and selected Carla [14]
as our platform since it is built on a foundation for learning reinforcement and
imitation models, making it as simple as possible to resemble the real world.
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2.4 Methods Reproduction

Data Generation. We generated the synthetic dataset using the Carla 0.9.13
simulator and placed an RGB camera at an intersection area in TOWN5.
Detailed information about the software and hardware specifications can be
found in the source code repository (Camera type: RGB Camera; Image res-
olution: 1280× 384; Camera location: x = 10 y = 0 z = 10; Camera pitch, yaw,
roll: 0; Field of view: 120). Specifically, our synthetic dataset, MonoRoadCam, is
composed only of car objects at the intersection area, and includes 7,481 devel-
opment images and 7,518 test images with annotations provided in the same
format as the KITTI dataset. For every frame of both the development and test-
ing sets, we ensured that at least one object is present. Each object in the dataset
is defined by its type, size, location, and orientation. For simplicity, we set the
occlusion and truncation levels to 0. Notably, the development images are not
sequential, and the test images only include 10 continuous frames. This diversity
provides a rich set of training and testing data. We extended the diversity of
the dataset by incorporating three weather conditions: night, cloudy, and sunny.
The statistics for the development and test sets are summarized in Table 3.

Table 3. Object size statistics in our dataset and in KITTI (car objects only).

Dataset Statistic Height [m] Width [m] Length [m]

KITTI (car object) Average 1.53 1.63 3.53

Ours (car object) Average 1.73 1.86 4.47

Std. Dev. 0.49 0.50 1.38

Min 1.20 0.33 1.49

Max 3.83 2.89 8.47

Data Pre-processing. We generated the 3D boxes automatically in Carla.
However to ensure that the data is free from any imprecise boxes, we performed
data preprocessing in three steps. Firstly, we removed the boxes placed outside
the road by determining the boundary of the road. Secondly, we removed too
small boxes. Finally, we replaced images that did not contain any objects with
other images. Figure 1 explains the data preprocessing phase in detail.

Model Creation. In our experiment, we evaluated two types of monocular 3D
object detection methods: anchor-based and keypoint-based.

The anchor-based methods, Kinematic [6] and M3DRPN [5], aim to improve
the accuracy of 3D estimation from a monocular camera. Kinematic incorporates
uncertainty reduction, Kalman filtering, and ego-motion to extract scene dynam-
ics. M3DRPN is built on the Faster R-CNN [31] concept and uses depth-aware
concepts to improve accuracy. Both M3DRPN and Kinematic use predetermined
3D bounding boxes (i.e., anchors) and estimate the deviation from the anchor
using offsets. On the other hand, the keypoint-based methods, Monodel [26] and
SMOKE [25], do not rely on predetermined bounding boxes. Monodel focuses on
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Fig. 1. Preprocessing steps for the images included in our dataset. In (a), we removed
all the boxes outside the road. In (b), we removed small boxes by setting a threshold.
In (c), we detected images not including any objects and replaced them. Blue (red)
bounding boxes denote images before (after) preprocessing. (Color figure online)

improving dimension estimation and considering localization errors as a source
of 3D detection inaccuracies. SMOKE estimates 3D objects directly without esti-
mating the 2D bounding box. Both methods are anchor-free and use DLA34 [40]
as a backbone. Despite the promising results, we decided not to include FCOS3D
[36], which separates the 2D and 3D attributes of objects and redefines the cen-
terness of objects based on the 3D center, since it required substantial steps to
receive data in our required format, going beyond the scope of this study.

In addition to the monocular 3D object detection methods, we also exam-
ined two roadside methods. The first method [43] proposed 3D object detection
and tracking using the point detection concept, then estimating the object’s
3D pose and size. It predicts the object’s 3D bottom center and uses a pre-
calibrated plane-to-plane homography to lift the prediction to 3D space. The
second method, UrbanNet [9], incorporated urban maps into the image to pro-
vide additional information to improve 3D estimation. Both these methods used
synthetic datasets. Specifically, the first method used CARLA and UrbanNet
used Grand Theft Auto V and KITTI. We excluded these methods from our
analysis due to the lack of public source code and data set.

Evaluation. In order to reproduce monocular models in both the KITTI and
MonoRoadCam datasets, we followed the same training/validation split proto-
col as proposed in [11], which is widely accepted in the field as a benchmark
for evaluating the performance of monocular models. This protocol consists of
3,712 training and 3,769 validation images, and is commonly used to evaluate the
performance of monocular models on the KITTI dataset. For our MonoRoad-
Cam dataset, we confirmed that there were no sequential frames, but we still
applied the same split protocol as in KITTI to unify the numbers of training
and validation sets. This allowed us to perform a fair comparison.
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For each trained model, we computed the evaluation metrics proposed and
used for the KITTI dataset. Specifically, we included the 11-point and 40-point
recall interpolated Average Precision (AP11 and AP40) and the Average Orien-
tation Similarity (AOS), which is used to measure the detector performance on
rotated rectangle detection. These metrics are defined as follows.

AP11 =
1
11

�

r∈0,0.1,...,1

pinterp(r), (1)

where pinterp(r) is the maximum precision for any recall value r� ≥ r.

AP40 =
1
40

�

r∈0,0.025,...,1

pinterp(r), (2)

where pinterp(r) is the maximum precision for any recall value r� ≥ r.

AOS =
1
11

�

r∈0,0.1,...,1

maxr�≥rs(r�) (3)

where s(r) is the orientation similarity.

s(r) =
1

|D(r)|
�

i∈D(r)

δi · 1
2
(cosΔθ

(i)
i + 1) (4)

where D(r) is all object detection at recall rate r, δi is a binary variable that is
set to 1 if detection i has been assigned to a ground truth bounding box (overlaps
by at least 50%), and Δθ

(i)
i is the difference in angle between the estimated and

ground truth orientation of detection.
It should be noted that AP40 provides a more fine-grained evaluation than

AP11, by computing the precision at 40 different recall levels. AP11 computes
precision at only 11 recall levels. Therefore, we used AP40 to perform a more
detailed comparison of the different models. We used AP11 only for M3DRPN.

3 Experimental Results

3.1 RQ1: Status of Reproducibility

In Table 4, we report the full reproducibility results under the KITTI validation
set for Kinematic, Monodle, M3DRPN, and SMOKE, together with the original
results reported in their respective papers on the same validation set. Regarding
M3DRPN, we conducted the same experiment as reported in the paper, using
AP with 11 recall points, whereas for the other methods, we used 40 recall points
for the AP calculation for the car object.

Our reproduced results showed a drop in performance for all the evaluated
methods when compared to the same results reported in the original papers.
However, on average, the decrease was not substantial, except for the SMOKE
method. We conjecture that the decrease for the latter can be attributed to a
misalignment in hyper-parameter values during training and decided to carefully
consider this aspect while training models with SMOKE on our dataset.
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Table 4. Comparison between the reproduced (Ours) and the original (Orig) results
for the Kinematic, Monodle, M3DRPN, and SMOKE methods on the KITTI dataset,
within the car object detection task. We report Average Precision (AP) values for both
3D and Bird’s Eye (BEV) views, both at easy, moderate, and hard levels. (*) denotes
AP for 11 recall points (40 recall points are used where not otherwise specified).

Method AP3D (IoU ≥ 0.7) APBEV (IoU ≥ 0.7)

Easy Mod Hard Easy Mod Hard

Ours Orig Gap % Ours Orig Gap % Ours Orig Gap % Ours Orig Gap % Ours Orig Gap % Ours Orig Gap %

M3DRPN* [5] 14.37 20.40 −29.56 11.67 16.48 −29.19 9.23 13.34 −30.81 20.94 26.36 −20.56 15.35 21.15 −27.42 16.72 17.14 −2.45

Kinematic [6] 17.76 19.46 −8.74 13.45 14.10 −4.61 10.65 10.45 1.91 25.41 27.83 −8.70 18.79 19.72 −4.72 15.16 15.10 −0.40

SMOKE [25] 0.59 14.76 −96.00 0.58 12.85 −95.49 0.36 11.50 −96.87 1.60 19.99 −92.00 1.26 15.61 −91.93 1.21 15.28 −92.08

Monodle [26] 11.40 17.45 −34.67 9.10 13.66 −33.38 7.55 11.68 −35.36 16.97 24.97 −32.04 13.26 19.33 −31.40 11.89 17.01 −30.10

3.2 RQ2: Influence of the Context

The context in which 3D object detection methods are applied can have a sig-
nificant impact on their performance. Therefore, we examined the performance
of the methods, training models from scratch on our synthetic dataset. We used
the Average Precision (AP) metric for both 3D object detection and bird’s eye
view (BEV) object detection. The results were computed separately for easy,
moderate, and hard difficulty levels to provide a comprehensive evaluation.

Table 5. Comparison between the results obtained on the autonomous driving (AD)
scenario (i.e., Ours in Table 4, calculated on the KITTI dataset) and on the roadside
cameras (RC) scenario (i.e., our synthetic dataset) by the considered models, within
the car object detection task. We report the Average Precision (AP) for both 3D and
Bird’s Eye (BEV) views, at easy, moderate, and hard levels. (*) denotes AP for 11
recall points (40 recall points are used where not otherwise specified, as in Table 4).

Method AP3D (IoU ≥ 0.7) APBEV (IoU ≥ 0.7)

Easy Mod Hard Easy Mod Hard

AD RC Gap % AD RC Gap % AD RC Gap % AD RC Gap % AD RC Gap % AD RC Gap %

M3DRPN* [5] 14.37 51.14 255.90 11.67 50.43 332.13 9.23 50.43 446.40 20.94 54.12 158.45 15.35 53.73 250.03 16.72 53.73 221.35

Kinematic [6] 17.76 56.49 218.07 13.45 54.15 302.60 10.65 54.15 408.45 25.41 59.40 133.77 18.79 57.27 204.80 15.16 57.27 277.77

SMOKE [25] 0.59 0.15 −74.58 0.58 1.30 124.14 0.36 1.30 261.10 1.60 0.61 −61.88 1.26 6.20 392.10 1.21 6.20 412.40

Monodle [26] 11.40 10.78 −5.44 9.10 9.91 8.90 7.55 9.91 31.26 16.97 11.89 −29.94 13.26 12.59 −5.05 11.89 12.59 5.89

Table 6. Results on the validation set of our synthetic dataset using the Kinematic,
Monodle, M3DRPN, and SMOKE methods. The table reports Average Precision (AP)
with 40 recall points in 3D and Bird’s Eye View (BEV) - the same results reported in
Table 5 - column RC, but organized here to ease the comparison across models - and
the Average Orientation Similarity (AOS) for the easy, moderate, and hard levels.

Method AP (IoU>=0.7) AOS

Easy Mod Hard Easy Mod Hard

AP3D APBEV AP3D APBEV AP3D APBEV

M3DRPN [5] 51.14 54.12 50.43 53.73 50.43 53.73 46.01 46.09 46.09

Kinematic [6] 56.49 59.40 54.15 57.27 54.15 57.27 45.52 46.73 46.73

SMOKE [25] 0.15 0.61 1.30 6.20 1.30 6.20 2.25 8.56 8.56

Monodle [26] 10.78 11.89 9.91 12.59 9.91 12.59 61.53 63.75 63.75
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Fig. 2. Qualitative comparison across models on the validation set of our dataset.

Comparing results across contexts (autonomous driving and roadside views)
in Table 5, it can be observed that most of the methods perform better on
our synthetic dataset (RC) compared to our experiment in the original KITTI
dataset (AD). For example, the Easy mode in the Kinematic method exhibited a
substantial gap, with a score of 56.49 in our dataset compared to 17.76 in KITTI.
However, it is crucial to consider the variations in object diversity between the
two datasets, particularly concerning object boundaries in our CARLA environ-
ment. We specifically tested the intersection area of a single scene. Although we
took precautions to prevent overlap between the training and validation sets,
and even in the training and validation phases, by excluding sequential frames,
it is possible that the inherent boundary characteristics from our CARLA setup
could still influence the results. Furthermore, it can be observed that the perfor-
mance of all methods decreases as the difficulty level increases in both datasets.
This is expected as the difficulty levels correspond to objects with smaller sizes
(we avoided occlusion and truncation in our dataset).

Comparing results across models (Kinematic, Monodle, M3DRPN, SMOKE)
in Table 6, it can be observed that Kinematic achieved the highest performance
in both AP 3D and AP BEV, with the best result being 59.40 in the Bird’s Eye
View easy mode. M3DRPN ranked second with strong AP scores. Conversely,
despite having lower AP scores compared to Kinematic and M3DRPN, Monodle
showcased impressive results in terms of AOS (63.75) under moderate and hard
difficulty levels. SMOKE reported the lowest overall performance, consistently
scoring lower in all metrics and difficulty levels among the four methods. Based
on such results, we concluded that the models exhibit effectiveness in the roadside
scenario of our synthetic dataset, especially when Kinematic is used.

3.3 RQ3: Qualitative Inspection

We finally conducted a qualitative comparison of the models, by employing spe-
cific challenging images chosen from the validation set. Images in Fig. 2 cover
various scenarios involving big and small cars as well as cars in close proximity.
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We found that Kinematic exhibited good projection accuracy, by accurately
localizing objects within the scenes. On the other side, M3DRPN displayed a
few false positives in some images (see columns 1–3). When it comes to Mon-
odle, we noticed limitations in terms of IOU scores in columns 1–2, indicating
that it struggles to precisely capture object boundaries. Furthermore, Monodle
generated a false negative in column 3. Interestingly, both M3DRPN and Mon-
odle detected truncated objects in column 2. As for SMOKE, we observed some
limitations in terms of IOU scores, false positives, and false negatives. Notably,
the latter faced noticeable challenges in accurately detecting larger cars.

4 Conclusions and Future Work

In this study, we shed a light on the scarcity of publicly available datasets for 3D
object detection from monocular cameras in roadside contexts. To address this
issue, we introduced a synthetic dataset generated through the CARLA simu-
lator, which is compatible with the popular KITTI format and can be seam-
lessly integrated into existing frameworks. Furthermore, we showed the feasibil-
ity of our dataset by verifying the reproducibility of state-of-the-art monocu-
lar autonomous driving models on roadside contexts, yielding promising initial
results.

Our findings suggest that our synthetic dataset could serve as a valuable
resource for researchers and practitioners in the field of autonomous driving,
facilitating the development and evaluation of 3D object detection algorithms
for roadside scenarios. Therefore, as next steps, from a data perspective, we
plan to extend the generated dataset with more examples and situations and
to explore innovative ways for gathering real-world annotated datasets. From a
methodological perspective, we plan to devise models that can lead to more effec-
tive and efficient computation under the considered roadside scenario. Finally,
to assess the impact of our work on the real world, we plan to run applicative
studies involving local municipalities.
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42. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. CoRR abs/1904.07850
(2019). https://arxiv.org/abs/1904.07850

43. Zou, Z., et al.: Real-time full-stack traffic scene perception for autonomous driv-
ing with roadside cameras. In: 2022 International Conference on Robotics and
Automation, ICRA 2022, Philadelphia, PA, USA, 23–27 May 2022, pp. 890–896.
IEEE (2022). https://doi.org/10.1109/ICRA46639.2022.9812137


