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Abstract
The scientific advances of recent years have made available to anyone affordable hardware devices capable of doing

something unthinkable until a few years ago, the reading of brain waves. It means that through small wearable devices it is

possible to perform an electroencephalography (EEG), albeit with less potential than those offered by high-cost profes-

sional devices. Such devices make it possible for researchers a huge number of experiments that were once impossible in

many areas due to the high costs of the necessary hardware. Many studies in the literature explore the use of EEG data as a

biometric approach for people identification, but, unfortunately, it presents problems mainly related to the difficulty of

extracting unique and stable patterns from users, despite the adoption of sophisticated techniques. An approach to face this

problem is based on the evoked potentials (EPs), external stimuli applied during the EEG reading, a noninvasive technique

used for many years in clinical routine, in combination with other diagnostic tests, to evaluate the electrical activity related

to some areas of the brain and spinal cord to diagnose neurological disorders. In consideration of the growing number of

works in the literature that combine the EEG and EP approaches for biometric purposes, this work aims to evaluate the

practical feasibility of such approaches as reliable biometric instruments for user identification by surveying the state of the

art of the last 6 years, also providing an overview of the elements and concepts related to this research area.
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1 Introduction

The possibility of detecting brain activity by easy-to-use,

small-sized, and low-cost sensors has opened up new per-

spectives in many fields of scientific research, from the

canonical ones relating to health [96], to applications

related to the control of robotic prostheses [59], or the most

recent ones related to biometric applications [52], in

addition to a huge number of applications related to med-

itation [39] and concentration [61], and these are just some

of the many possible examples. The brain waves detection

activity carried out by these sensors, which is formally

defined electroencephalogram (EEG) [83], is performed by

measuring the brain electrical activity through a series of

electrodes placed on the scalp. This represents a quite

complex operation in the context of canonical professional

instruments since it requires the application of numerous

electrodes, typically applied using a conductive paste,

whereas it is a very simple task in the context of almost all

the low-cost devices because it requires only to wear a light

headband/headset. It should be observed that the afore-

mentioned placement modality is afferent to the extracra-

nial techniques, as there is another technique defined

intracranial that requires the application of the sensors

inside the skull; then, it is aimed to particular applications

that require greater detection sensitivity, under medical
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supervision: It is formally defined intracranial electroen-

cephalography (iEEG) [6].

The largest area of our brain is the cortex, composed of

the frontal, temporal, parietal, and occipital lobes. The

frontal one is related to the conscious thought (executive

functions); the temporal one is related to the memory,

understanding, and language, processing complex stimuli

such as face and scene recognition; the parietal one is

related to sensory information integration from different

senses and the manipulation of objects (perception); and

the occipital one is related to the vision. In addition, the

cerebellum, which is located at the back of the brain,

underlying the occipital and temporal lobes, manages the

coordination and movement related to motor skills. The

above information is summarized in Fig. 1.

The EEG is a technique able to read the scalp electrical

activity that is generated by the brain structures, measuring

the voltage variations (i.e., typically from 10 to 100 mil-

livolt in an adult subject) related to the ionic current flows

of the brain’s neurons [2]. The placement of the electrodes

on the scalp follows the International 10–20 System shown

in Fig. 3, a formalization that takes into account the rela-

tionship between the location of the electrodes and the

underlying cerebral cortex area, offering a guide for the

possible placement of the electrodes: Each position is

denoted by a letter that refers to the lobe and a number/

letter that refers to the hemisphere location. In more detail,

the letters C, F, P, O, and T indicate the central, frontal,

parietal, occipital, and temporal lobes, and it should be

noted that the Central lobe is used only for identification

reasons (i.e., it does not exist). Analogously, the even

numbers indicate the right hemisphere, and the odd num-

bers indicate the left hemisphere. In addition, the letter

z indicates an electrode placed on the median line, and the

smaller it is a number, the closer it is to the median line.

Lastly, Nasion indicates the point between the forehead and

nose and Inion the point at the back of the skull. About the

relation between the electrodes during an EEG session, the

measurements take into account the electrodes according to

different combinations of them that are named montages.

Concluding, we also formalize the driven right leg (DRL)

and the common mode sense (CMS). They represent the

electrical reference of the EEG system: The CMS repre-

sents the reference channel, in relation to which all EEG

signals are measured, whereas the DRL task is to maintain

the potential of the user as close as possible to the electrical

zero value.

The brain is composed of billions of neurons, where

each of one is mean connected to thousands of other ones,

giving rise a communication based on small electrical

voltages (microvolts) that involve a huge network of brain

circuits. When a neuron is activated, it generates electrical

pulses and these activities are defined as brain waves. The

brainwaves activity formally refers to five areas, identified

by a Greek letter, where each area is characterized by a

frequency range, and each activity identifies a specific

brain status.

Such signals, an example of which is shown in Fig. 2,

indicate that each brain region is characterized by different

wave frequencies, and they are emitted simultaneously. For

this reason, an EEG signal is composed of several waves

with different characteristics and this leads toward a hard

task when it is necessary to interpret them, as the data

patterns are unique for every person. The frequency range

of these waves, measured on the scalp through some sen-

sors, is from 4 to 100 Hz. An EEG output is typically

divided into frequency bands, where we have (in

descending order of frequency): the Gamma wave greater

than 30 Hz, the Beta wave from 12 to 30 Hz, the Alpha

Fig. 1 Brain lobes’ functions Fig. 2 Brain wave samples
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wave from 8 to 12 Hz, the Theta wave from 4 to 8 Hz, and

the Delta wave less than 4 Hz. In some cases, these fre-

quency ranges are further divided into several parts (e.g.,

low, mid, and high), to better define the associated brain

states. Generally, the performed studies demonstrate a

strong correlation between the slowest rhythms and the

inactive brain state, and between the fastest rhythms and

the brain processing of information. In such a context, it

should be observed that deep sleep is characterized by

high-amplitude and low-frequency oscillations, whereas

wakefulness is characterized by low-amplitude and high-

frequency oscillations.

The literature shows how the ratios between two fre-

quency bands can lead toward interesting metrics such as

the Delta/Beta ratio, which provides an index of slow-wave

sleep quality. This approach needs that both bands use the

same window length of the periodogram because using

different window lengths generates meaningless metrics

[87]. The most used of them are discussed in several works

[24].

1.1 Motivations and contributions

Unlike other biometric approaches (e.g., fingerprint

recognition, facial recognition, retinal recognition, etc.),

the study of which in the literature has led to scientifically

valuable results after a certain period, we have observed a

different trend regarding the EEG-based approaches. The

reason is probably to be attributed to their not easy appli-

cability, due to the intrinsic limitations of the EEG data,

and a series of some collateral aspects such a the lack of

stability over time of the EEG patterns, the time required

for the detection respect to the other approaches, and so on.

For this reason, this study aims to analyze the literature

works of the last 6 years according to a metric of con-

creteness related to the feasibility of such approaches in the

biometric field. More specifically, our main contributions

are the following:

(1) We investigate the electroencephalography and

evoked potentials feasibility as a biometric user

recognition approach, taking into account tech-

niques, strategies, and detection devices.

(2) We survey the literature on biometric recognition

approaches based on visual, auditory, and vibration

evoked potentials, collecting 26 works amenable to

investigation, analyzing several aspects of them,

such as hardware devices, data collection protocols,

and experimental results.

(3) Based on the evaluated literature, we discuss the

involved hardware and models, the data collection

protocols, as well as the trends, challenges, and

future research directions, both in general terms

(brain–computer interface) and in the specifics of the

approaches taken into consideration (EEG data under

external stimuli).

1.2 Acronyms and organization

In order to simplify the reading of this paper, avoiding the

reader to search from time to time the meaning of the

acronyms already defined, their definition is repeated in

most cases again. In addition, Table 1 reports the most

important acronyms used in this work, alphabetically

sorted.

The rest of the paper is organized as follows: Sect. 2

offers an overview of the research domain taken into

account in this work, providing information about EEG

acquisition devices, biometric approaches, evoked poten-

tial techniques, and evaluation metrics used in this field;

Sect. 3 reports the methodology used to select the literature

works of the last 6 years that are focused on the approach

taken into consideration (EEG and EP), which are here

analyzed and discussed; Sect. 4 compares and discusses all

the considered literature works in terms of several common

and most relevant characteristics, also discussing trends,

models, architectures, challenges, and research directions

related to this domain; and Sect. 5 concludes this work

with some remarks and future research directions.

2 Domain overview

This section provides an overview of the research domain

taken into account in this work and it is organized as fol-

lows: Sect. 2.1 provides information about the most pop-

ular low-cost EEG devices; Sect. 2.2 discusses the

biometric approaches designed for user identification tasks;

Sect. 2.3 presents the evoked potentials techniques; and

Sect. 2.4 introduces the evaluation metrics largely used in

this field to evaluate the performance of the biometric

systems.

2.1 Detection devices

The main characteristics of the most popular low-cost EEG

devices are summarized in Table 2. All these devices are

easy to use since they are implemented as a kind of

headband or headset, and they use dry electrodes that do

not require any preparation (e.g., the application of a

conductive paste), allowing a wireless use, which is usually

implemented through the Bluetooth Low Energy (BLE)

protocol. It should be observed that many of these devices

make available other sensors in addition to those related to

EEG analysis, such as the InteraXon Muse devices, which
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provide further sensors able to measure, in real time, the

heart rate (PPG) by combining a Photoplethysmogram (i.e.,

an optically approach able to detect blood volume changes

in the microvascular bed of tissue) and a Pulse Oximetry

(i.e., a noninvasive approach able to monitor the oxygen

saturation), the breathing combining the PPG and a Gyro-

scope data, and the body movements using an

Accelerometer. The combined use of EEG data with that of

other sensors can improve the discrimination of certain

types of information, such as in this work [28], where the

tracking of the body motion combined with the measure-

ment of the neural activity is used to improve the

recognition of the actual activity of a user. In this work, we

will not take these additional sensors into account.

All devices are also powered by rechargeable Li-ion

batteries and they communicate through wireless connec-

tions, typically based on the Bluetooth Low Energy (BLE)

protocol. But the most interesting aspect in this research

field is the great availability of applications and libraries

for the most popular operating systems and programming

languages, among which some significant examples are:

Brainflow (https://brainflow.org), a Python library that

offers API able to filter, parse, and analyze the EEG data;

Brains@play (https://brainsatplay.com), an open-source

Table 1 Used acronyms

Acronym Meaning Acronym Meaning

ADC Analog-to-digital converter FRR False rejection rates

AR Auto-regressive FVEP Flash visually evoked potentials

ANN Artificial neural network GA Genetic algorithm

BCI Brain–computer interface HDCA Hierarchical discriminant component analysis

BNN Backpropagation neural network HTER Half total error rate

CCC Cross-correlation coefficient IP Induced potential

CMS Common mode sense IPS Intermittent photic stimulation

CNN Convolutional neural network KNN K-nearest neighbor

CVEP Code-modulated visually evoked potentials LSB Least significant bit

CRR Correct recognition rate LSTM Long short-term memory

DL Deep learning MFC Mel-frequency cepstrum

DRL Driven right leg MFCC Mel-frequency cepstral coefficient

EC Eyes closed PCA Principal component analysis

EER Equal error rate RF Random forests

EP Evoked potential RSVP Rapid serial visual presentation

ERP Event-related potential SSA Stationary subspace analysis

FAR False acceptance rates SSVEP Steady-state visually evoked potential

FLC Fisher linear classifier SVM Support vector machine

FMRI Functional magnetic resonance imaging TAR True acceptance rate

FNIRS Functional near-infrared spectroscopy WPD Wavelet packet decomposition

Table 2 Most popular low-/medium-cost EEG devices

Brand name Product name Data resolution (bits) Bandwidth range (Hz) Number of electrodes

Emotiv Insight 14 0.50–43 05

Emotiv Epoch X 14/16 0.16–43 14

Emotiv Epoch ? 14/16 0.16–43 14

Emotiv Epoch Flex 14 0.20–45 32

InteraXon Muse 2 12 0.20–45 04

InteraXon Muse S 12 0.20–45 04

Neurowsky MindWave mobile 2 12 3.00–100 01

OpenBCI Cyton biosensing board 24 1.00–50 08
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framework that allows developers to create brain-respon-

sive applications based on the web technologies; and Muse

LSL (https://github.com/alexandrebarachant/muse-lsl), a

Python package that provides functions for streaming,

visualizing, and recording the EEG data.

The most popular low-/medium-cost devices available

on the market at the time of writing this paper are sum-

marized in Table 2 and subsequently described in detail.

Some manufacturers, such as OpenBCI, also market

higher-price-range products, which are not discussed here.

In addition, in Table 2 we do not take into consideration

the high-cost devices, which are unsuitable for widespread

usage in the context of biometric identification systems

since in addition to their high cost, they are usually char-

acterized by larger size and numerous electrodes.

Emotiv (https://www.emotiv.com) The Emotiv Insight

device provides 5 EEG channels, which are related to the

AF3, AF4, T7, T8, and Pz placements of Fig. 3, plus the

common mode sense (CMS) and the driven right leg (DRL)

references. The data acquisition is performed through a

single analog-to-digital converter (ADC) with a sampling

rate of 128 Hz. The data resolution in terms of least sig-

nificant bit (LSB) is 0.51 lV (14-bit mode). The bandwidth

is in the frequency range from 0.5 to 43 Hz, with a digital

notch filter applied at 50 and 60 Hz. The ratio between the

largest and smallest values in the input data (dynamic

range) is 8400 lVpp (peak-to-peak voltage). Its cost at the

time of writing this work was 260 euros approximately.

The Emotiv Epoch X device provides 14 EEG channels,

which are related to the AF3, F7, F3, FC5, T7, P7, O1, O2,

P8, T8, FC6, F4, F8, and AF4 placements of Fig. 3, plus 2

references at P3 and P4 (CMS and DRL). The data

acquisition is performed through a single ADC with a

sampling rate of 128 or 256 Hz (configurable). The data

resolution in terms of LSB is 0.51 lV or 0.1275 lV ,

respectively, for the 14- and 16-bit mode. The bandwidth is

in the frequency range from 0.16 to 43 Hz, with a digital

notch filter applied at 50 and 60 Hz. The ratio between the

largest and smallest values in the input data (dynamic

range) is 8400 lVpp (peak-to-peak voltage). Its cost at the

time of writing this work was 750 euros approximately.

The Emotiv Epoch ? device has the same characteristics

as the Emotiv Epoch X model, differing from this only for

the battery life (6 instead of 9 h) and for the absence of the

Bluetooth 5 (BT5) protocol support. This product is now

discontinued and replaced with the Emotiv Epoch X model;

The Emotiv Epoch Flex device provides 32 EEG chan-

nels, which are configurable on standard 72 channel

international 10–20 locations shown in of Fig. 3, plus the

CMS and DRL references. The data acquisition is per-

formed through a single ADC with a sampling rate of 128

Fig. 3 International 10–20

system

Neural Computing and Applications (2023) 35:11625–11651 11629

123

https://github.com/alexandrebarachant/muse-lsl
https://www.emotiv.com


Hz (1024 Hz internal). The data resolution in terms of LSB

is 0.51 lV or 0.1275 lV , 14-bit mode (2-bit instrumental

noise floor discarded). The bandwidth is in the frequency

range from 0.2 to 45 Hz, with a digital notch filter applied

at 50 and 60 Hz. The ratio between the largest and smallest

values in the input data (dynamic range) is ± 4.12 mVpp

(peak-to-peak voltage). Its cost at the time of writing this

work was 1500 euros approximately.

InteraXon (https://choosemuse.com) The InteraXon Muse 2

device provides 4 EEG channels, which are related to the

TP9, AF7, AF8, and TP10 placements of Fig. 3, plus the

CMS and the DRL references. The bandwidth is in the

frequency range from 0.2 to 45 Hz, and the data acquisition

is performed through a single ADC with a sampling rate of

256 Hz. The data resolution is 12 bit, and its cost at the

time of writing this work was 270 euros approximately.

The InteraXon Muse S (Gen 2) device provides 4 EEG

channels, which are related to the TP9, AF7, AF8, and

TP10 placements of Fig. 3, plus the CMS and the DRL

references. The bandwidth is in the frequency range from

0.2 to 45 Hz, and the data acquisition is performed through

a single ADC with a sampling rate of 256 Hz. The data

resolution is 12 bit, and its cost at the time of writing this

work was 380 euros approximately.

Neurosky (http://neurosky.com) The Neurosky MindWave

Mobile 2 device provides 1 EEG channel, which are related

to the FP1 placement of Fig. 3, plus the CMS and the DRL

references. The data acquisition is performed through a

single ADC with a sampling rate of 512 Hz. The bandwidth

is in the frequency range from 3 to 100 Hz, the data res-

olution is 12 bit, and its cost at the time of writing this work

was 390 euros approximately.

OpenBCI (https://openbci.com) The OpenBCI Cyton

Biosensing Board is a development board Arduino-com-

patible based on a 32-bit PIC32MX250F128B microcon-

troller; it provides 8 EEG channels, but the kit does not

include electrodes (it is compatible with both active and

passive electrodes). The data acquisition is performed

through a single ADC (Texas Instruments ADS1299) with

a sampling rate of 250 Hz. The data resolution is 24 bit,

and its cost at the time of writing this work was 660 euros

approximately.

It should be noted that the devices discussed here, even

if they respect the placements formalized in Fig. 3, use a

reduced number of electrodes. By way of example, the

InteraXon Muse 2 uses five dry electrodes placed on a

headband, one of which used as a reference (NZ) and the

remaining four for detection of brain activity (i.e., TP9,

AF7, AF8, and TP10), as shown in Fig. 4.

2.2 Biometric approaches

The biometric authentication is a process aimed to identify

a user based on some unique characteristics and it usually

works by comparing the acquired biometric data of the user

to identify with those stored in a database. For this reason,

such a process involves approaches and strategies able to

uniquely recognizing humans based on some characteris-

tics, from the exploitation of physical attributes for

recognition (e.g., fingerprint, iris, face, etc.), where the user

cooperation is required (physical biometrics), to other

indirect approaches/strategies (behavioral biometrics),

where instead it is not necessary. The advantages and

disadvantages of the biometrics techniques are discussed in

several literature works [74].

A growing number of works in the literature are aimed

at the exploitation of EEG signals in the biometric field

[98], to identify unique patterns capable of identifying

users, such as Campisi and La Rocca [11], where the

authors analyzed the brain activity for the automatic user

recognition purpose. Some works [20, 84, 85] faced this

task by presenting practical approaches, as well as parallel

studies focused on the involved aspects [26], such as the

evaluation metrics, whereas another work [81] proposes a

system that allows users to set a pattern of brain waves to

perform the same task, combining eye blink, attention, and

the Alpha, Beta, Theta, and Delta brain rhythms.

Other approaches induce external stimuli of different

types to improve the uniqueness of the brain waves patterns

and, consequently, the reliability in identifying users,

although it should be observed that the adopted stimulation

tools often do not allow a practical use as a mechanism for

authentication, due to the need of long time of detection

and/or expensive tools [32]. In this work [51], the authors

exploit the EEG activity evoked by invisible visual stim-

ulation as a biometric approach, whereas another one [64]

proposes an approach to brain biometric user recognition,

such as this work [1], where the authors propose an

authentication system based on the features of two brain

waves: Gamma and Beta. This interesting survey [29] on

the brain biometric systems literature provides a valuable

overview on this specific research scenario.

Another interesting work [44] offers a deep and sys-

tematic biometric characterization of the frequency fol-

lowing response (FFR), an evoked potential generated by

periodic or nearly periodic auditory stimuli, with the aim of

providing the basis for biometric identification systems that

use this neural signal. The experiments were performed

using a hidden Markov model (HMM) to decode the

identity of the users through FFR spectro-temporal patterns

across multiple frequency bands, adopting a dataset related

to 10 English native speakers and 10 Mandarin Chinese
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native speakers, recognizing the user identity in the same

auditory context (same tone and session) and across dif-

ferent stimuli and recording sessions.

Usually, an EEG signal analysis is performed by fol-

lowing three main steps: (1) the EEG signal features are

extracted; (2) the features related to the task to be per-

formed are selected; and (3) an evaluation model is trained

with these data to classify them.

2.3 Evoked potentials

The evoked potentials (EPs) or induced potentials (IPs)

[92] are electrical potentials measured in a part of the

nervous system, mainly in the brain, as the effect of a

stimulus. Some examples related to the research area taken

into account in this work are the auditory evoked potentials

(AEPs), which refers to acoustical stimuli (e.g., a tone), or

the visually evoked potentials (VEPs), which are instead

related to visual stimuli (e.g., a light flash), and the

vibratory evoked potentials [79], such as the imperceptible

vibratory ones [73].

They are largely exploited in clinical routine, in order to

evaluate the electrical activity related to some areas of the

brain and spinal cord, where in combination with other

diagnostic tests are exploited to diagnose neurological

disorders (e.g., drug-related sensory dysfunctions). With

regard to the brain area, the amplitude of this potential is

very low, typically from less than a microvolt to several

microvolts.

Some examples of used devices in this field are the

Intermittent Photic Stimulation (IPS) [17], which is usually

implemented through glasses able to generate intermittent

light emission. Similarly to the IPS, it is possible to use

sound stimuli with different frequencies. For instance, in

Di et al [22] the authors investigated the effect of 50 and 6

phon (a logarithmic unit of loudness level for tones and

complex sounds), intermittent pure tones, using the fre-

quency of 125 Hz, 250 Hz, 500 Hz, 1000 Hz, and 4000 Hz,

with a duration of 10 s, demonstrating the existence of

Fig. 4 Muse 2 electrode

placement
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relationships between the EEG activity and the acoustic

properties of stimuli.

The binaural phenomena have been studied for a very

long time [16], they fall in the previously mentioned AEP

area and refer to the perception of interaural differences in

the binaural stimulus [9]. It means that the brain is inducted

to interpret two tones, applied on the left and right ears, as

a single tone of a frequency given by the difference in

Hertz (Hz) between the frequencies of the two tones. The

two tones that produce the single tone perceived by the

brain are formally defined carrier tone and offset tone [41].

Their influence on the EEG activities is investigated in

other works [34], where the study of average amplitudes of

the spectral density function of brain waves strength signal

generates some effects, mainly related to the components

of the EEG signal characterized by the same frequency as

the binaural beats. In more detail, a statistically relevant

decrease in the average amplitudes of the spectral density

function of the EEG strength signal related to the Alpha

and Beta frequencies was detected in the presence of bin-

aural beats.

Other studies [18] explored the effect of the low-fre-

quency binaural beats (from 200 to 900 Hz) in the reduc-

tion of anxiety and the modification of some psychological

conditions/states through the alteration of the cognitive

processes and mood states. Regardless of the different

approaches, according to the literature, the binaural beat

frequencies should be lower than 1000 Hz [41], indicating

a stimulation period of about 2 min [27]. The aforemen-

tioned works also underline how significant beat frequency

responses are related to the use of 40 Hz binaural beat

(obtained using a carrier tone = 380 Hz and an offset tone

= 420 Hz), as well as to the same binaural beat obtained

using a carrier tone = 390 and an offset tone = 430, or a

carrier tone = 810 and an offset tone = 850. This evidences

that we get a significant response when the brain is stim-

ulated by pairs of tones afferent to both low and high

frequencies. An interesting study [63] was aimed to eval-

uate the impact of binaural beats, discussing their positive

and negative effects in several areas, such as education,

health care, IT security, and entertainment, but without

addressing the e-drug (digital drugs) effects, which are

discussed in other works [5].

In this field, it should be mentioned the steady-state

visually evoked potential (SSVEP), a stimulus-locked

oscillatory reply to a series of periodic visual stimulation,

which can be recorded by an EEG device [58]. This is an

approach widely used due to its characteristics of nonin-

vasiveness, high signal-to-noise ratio, and ease of use Sil-

berstein et al. [77]. Another work [101] explores the

feasibility of using a convolutional neural network to

decode the EEG data for user authentication purposes,

exploiting in this context the low-frequency components of

the SSVEP.

Another type of stimulation with which the efficacy in

the biometric field is being tested is motor imagery (MI), a

technique based on a process in which the user imagines a

certain action without performing it at the muscular level.

The EEG signals related to four types of MI that involve

three subjects are discussed in Hu [31], where the authors

take into account two different cases of classification,

including the user identification one, or in Das et al [21],

where in the same context the authors exploit a convolu-

tional neural network (CNN) for the automatic discrimi-

native feature extraction and person identification.

In the context of the biometric user recognition systems

based on the EEG data, in order to face the problems

related to the usage of external stimuli that require the

attention of the users, along with a relatively long time for

the recognition process, several studies in the literature

experimented the resting state (RS) as a possible solution.

This is an approach where the EEG data collection is

performed in a resting state of the user, without the

application of external stimuli [15].

In accordance with the literature (i.e., that included in

the period between 2017 and 2022), this study takes into

account the most common and easy-to-use stimulation

techniques: visual, auditory, and vibratory ones.

In this regard, it should be formalized that the event-

related potentials (ERPs) [30] are the brain responses

measured after certain sensory, cognitive, or motor events;

then, they are an electrophysiological response to a stim-

ulus. With regard to the EEG scenario, an ERP is recorded

from the scalp of a user whose a sound or a visual stimulus

is applied, and the evoked potentials and the induced

potentials represent subtypes of the ERPs.

2.4 Evaluation metrics

The performance of a biometric system is mainly expressed

based on two different error metrics: the false acceptance

rate (FAR) and the false rejection rate (FRR) [19]. In the

case of the FAR, it expresses how many times an unau-

thorized person is mistakenly allowed access, while in the

case of the FFR, it expresses how many times an authorized

person is mistakenly denied access. These two metrics are

inversely proportional because the more secure the bio-

metric system is, the less comfortable it is to use since

authorized users could be more easily not recognized by

the system. In other words, as the value of FAR decreases,

the value of FRR increases, and vice versa. It should be

noted that in real-world scenarios a false acceptance rep-

resents an undesirable result, whereas a false rejection is

more tolerable.
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Other largely used evaluation metrics in this field, which

are based on the FAR and FRR metrics, are the half total

error rate (HTER), calculated as HTER ¼ ðFARþFRRÞ
2

,

and the equal error rate (EER), also known as crossover

error rate (CER), which refers to the HTER evaluated

when the FAR value is equal to FRR one.

Some other simple metrics frequently used in the bio-

metric literature are the Correct Recognition Rate (CRR),

which represents the percentage of correctly identified

users over their total number, and the true acceptance rate

(TAR), which is calculated as TAR = 1 - FRR.

The relation between FAR, FRR, and EER values is

shown in Fig. 5, where Threshold is the value where we

consider correct the prediction performed by the adopted

evaluation model.

3 Literature review

In this section, we present the scientific literature on bio-

metric recognition approaches based on evoked potentials.

First, Sect. 3.1 presents the methodology we used to collect

the papers. Then, Sect. 3.2 presents the selected works.

3.1 Methodology

Following, we present the methodology we use to collect

the papers.

(1) First, we have drawn up a candidate list by using

Google Scholar (https://scholar.google.it), as it rep-

resents one of the most inclusive search engines for

scientific publications. After a series of tests aimed at

identifying the best keywords to use, since initially

we get thousands of works focused on other topics

that addressed our topic only marginally (e.g., in the

related work), we have identified the following as the

optimal query:

This because it performs the search only in the title

of the works, allowing us to filter and extract only the

relevant works. In addition, to identify other relevant

works despite the absence of related keywords in the

title, further searches were conducted without using

the allintitle directive, manually filtering the

results.

(2) We have selected the subset of papers relating to the

last 6 years (i.e., from 2017 to 2022).

(3) In order to cross-check the authoritativeness of the

works obtained through this search, we have

excluded from our sample the papers that are not

also indexed by Scopus and/or Web of Science

(WOS).

(4) Then, we have selected the subset of papers that use

approaches based on one of the following evoked

potentials: auditory, visual, and vibratory.

(5) Finally, although we have tried to be as exhaustive as

possible in the selection of the related literature

papers, we have excluded some of these due to their

not direct relevance to the subject of this work, or for

their formalization of the experimental results that

did not allow us to perform a comparative analysis.

Regarding step four, it should be noted that our orientation

in this work was to take into consideration only widely

used stimulus techniques (EPs) that are suitable for use in

the context of biometric recognition systems, then

excluding techniques that did not meet this requirement,

according to the related literature.

For this reason, we excluded stimulus techniques dif-

ferent from the auditory, visual, and vibratory ones. This

allowed us to take stock of the situation of the last 6 years

of research in a quite exhaustive manner with regard to the

type of application taken into account, i.e., biometric user

recognition systems based on EEG and EPs.

We believe that such an orientation represents an

interesting scientific contribution since our work differs

from the others in the literature, which usually are char-

acterized by a more dispersive approach because they are

not so sharply focused on a specific target. This also in the

light of the following observations: (1) a generic search in

the literature of EEG-based biometric systems leads toward

thousands of results in the last 6 years, making an

exhaustive analysis impossible and moreover useless for

the purposes of our work; (2) a specific search in the lit-

erature carried out on Scholar in the period under consid-

eration, according to the following query:
Fig. 5 FAR, FRR, and EER metrics
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It is aimed to detect all the works based on the stimu-

lation techniques we did not considered, returns only 22

results, of which only six (resting-state-based = 4, motor-

imagery-based = 1, steady-state-based = 1) focused on the

biometric user identification systems

[15, 37, 55, 58, 88, 89], and excluded by us for the reasons

previously discussed (with the exception of the work [58],

as it combines the steady state with a visual stimulus and

meets our requirements), whereas all the other ones were

oriented on secondary aspects such as the system robust-

ness analysis [23], the minimization of the number of EEG

channels [47], and so on.

It should be noted that, as regards 2022, at the time of

writing this work there was only a work in the literature

that met the requirements mentioned above, probably due

to the publication time needed by many conferences and

journals.

3.2 Analysis of literature works

The related literature works selected by following the cri-

teria reported in Sect. 3.1 are shown in Table 3 sorted by

date, where an identifier has been added (i.e.,

W01;W02; . . .;W26) to quickly refer to these works later.

These works are discussed in the following with the

same chronological order, starting with the indication of

the identifier, the publication year, and the used stimulus

(i.e., auditory, visual, or vibration).

½W01; 2017; Visual� in this work, the authors propose a

biometric recognition approach based on the steady-state

visually evoked potentials (SSVEPs) technique. In their

work the EEG responses to SSVEP stimuli flickering at

different frequencies are measured, using both the mel-

frequency cepstral coefficients (MFCCs) and the auto-re-

gressive (AR) reflection coefficients as discriminating

features of the users. It should be noted that the mel-fre-

quency cepstrum (MFC) is a representation of the short-

term power spectrum of a signal and the mel-frequency

cepstral coefficients (MFCCs) are coefficients that collec-

tively compose the MFC.

In more detail, to identify a user they rely on the EEG

data alterations inducted by repetitive stimuli characterized

by a constant frequency, recording the result repeating the

process at different frequencies. The validation process was

performed using 25 users in the context of two different

sessions repeated with an average interval of 15 days

(disjoint-time sessions). The results indicate that combined

use of multiple stimulation frequencies leads toward both

to a significant improvement in recognition rates, and to the

possibility of using fewer electrodes during the EEG data

recording, thus highlighting its possible practical applica-

tion in the biometric field. The experimental results show

as best performance a CRR ¼ 96:00% using MFCCs.

½W02; 2017; Visual� this work defines an EEG-based

biometric system that exploits the brain waves data evoked

by an invisible visual stimulation. According to it, a frame

(target image) is inserted into a video displayed at a high

frame rate, decreasing the target intensity simultaneously.

The spectral differences are then measured on the EEG at

different intensity conditions, and the results are used as

features that characterize the user, verifying the identities

through a Euclidean distance metric. The experiments,

which involved 20 users, show that to improve the

uniqueness of the patterns related to each user in evoked

brain waves (with respect to the spontaneous brain waves),

the invisible visual stimuli need to be calibrated for each

user, then it is not possible to use the same stimulation for

all the users. The experimental results show as best per-

formance an EER ¼ 23:00% under a certain configuration.

½W03; 2017; Visual� in their work, the authors formalize

an online biometric system based on the combination of the

EEG with a series of subject-specific self-referential visual

stimuli, intending to get a more stable/reliable EEG iden-

tification pattern about a user. The stimulation is composed

of self-face and the subject’s relatives images, and the

biometric task is performed using the relative spectral

activity of the left and right hemispheres (band-invariant

information of multiple frequency bands). The experi-

mentation took place with 4 users and the results indicate

an average biometric recognition accuracy of 87.50%,

which indicates a practical application in the biometric

field if this will be confirmed by subsequent experimenta-

tions carried out with a greater number of users. The

experimental results show as best performance an

CRR ¼ 87:50%, a FRR ¼ 12:50%, and a FAR ¼ 12:50%.

½W04; 2018; Visual� in this work, instead, the authors

propose a biometric system for the user authentication that

is based on the EEG stimulation through self-face and non-

self-face photos. This approach, with the aim of improving

the brain wave patterns stability, in the sequence of visual

stimuli takes into consideration the sequence of self-face

photos, including the first-occurrence position and the non-

first-occurrence position. In order to overcome the
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performance of the canonical solutions, the authors used a

Fisher linear classifier (FLC) and the event-related

potential (ERP) technique for the analysis of the brain

waves features. The validation phase, performed with 10

users (6 male and 4 female), shows the feasibility of the

approach as a biometric authentication system; The

experimental results show as best performance an CRR ¼
82:30% and a FRR ¼ 11:20%.

½W05; 2018; Visual� also in this work, the authors face the

biometric challenge by recurring to the image stimulation,

extracting the features by the cross-correlation coefficient

(CCC), and classifying them through the support vector

machine (SVM) algorithm. In addition, some preprocessing

Table 3 Related scientific works from 2017 to 2022

ID Year Source Title References

W01 2017 IEEE Steady-state visual evoked potentials for EEG-based biometric identification Piciucco et al. [58]

W02 2017 IEEE Biometric potential of brain waves evoked by invisible visual stimulation Nakanishi and

Hattori [51]

W03 2017 IEEE EEG-based biometric authentication using selfreferential visual stimuli Thomas et al. [86]

W04 2018 IMR Application of a brain–computer interface for person authentication using EEG responses to

photo stimuli

Mu et al. [48]

W05 2018 IEEE The proposal and it’s evalution of biometric authentication method by EEG analysis using

image stimulation

Yamashita et al.

[97]

W06 2018 IEEE Convolution neural networks for person identification and verification using steady state visual

evoked potential

El-Fiqi et al. [25]

W07 2019 MDPI EEG-based identity authentication framework using face rapid serial visual presentation with

optimized channels

Zeng et al. [103]

W08 2019 IEEE EEG-based person authentication method using deep learning with visual stimulation Puengdang et al.

[60]

W09 2019 IEEE A new approach for EEG-based biometric authentication using auditory stimulation Seha and

Hatzinakos [70]

W10 2019 IEEE Biometric authentication using evoked potentials stimulated by personal ultrasound Nakanishi and

Maruoka [52]

W11 2019 IEEE Individual identification based on code-modulated visual-evoked potentials Zhao et al. [104]

W12 2020 FLAIRS Music stimuli for EEG-based user authentication Li et al. [42]

W13 2020 MDPI Biometrics using electroencephalograms stimulated by personal ultrasound and

multidimensional nonlinear features

Nakanishi and

Maruoka [53]

W14 2020 IEEE Wavelet transform and machine learning-based biometric authentication using EEG evoked by

invisible visual stimuli

Miyake et al. [46]

W15 2020 IEEE Biometric identification based on EEG signal with photo stimuli using hjorth descriptor Wijayanto et al.

[95]

W16 2020 IEEE Introduction of fractal dimension feature and reduction of calculation amount in person

authentication using evoked EEG by ultrasound

Mukai and

Nakanishi [49]

W17 2020 IEEE Individual identification using code-modulated visual potentials with left-and-right balance Li and Huang [43]

W18 2021 Springer Person authentication based on eye-closed and visual stimulation using EEG signals Yap et al. [100]

W19 2021 Elsevier Person-identification using familiar-name auditory evoked potentials from frontal EEG

electrodes

Jijomon and Vinod

[33]

W20 2021 Elsevier Towards online applications of EEG biometrics using visual evoked potentials Zhao et al. [105]

W21 2021 IOP The wavelet packet decomposition features applied in EEG based authentication system Rosli et al. [66]

W22 2021 IEEE Single-channel EEG-based subject identification using visual stimuli Katsigiannis et al.

[35]

W23 2021 IEEE Longitudinal assessment of EEG biometrics under auditory stimulation: a deep learning

approach

Seha and

Hatzinakos [71]

W24 2021 IEEE Performance improvement in user verification using evoked electroencephalogram by

imperceptible vibration stimuli

Nakashima et al.

[54]

W25 2021 IEEE Person verification using electroencephalograms evoked by new imperceptible vibration

stimulation

Shindo and

Nakanishi [75]

W26 2022 IEEE Person authentication using brain waves evoked by individual-related and imperceptible visual

stimuli

Rahman and

Nakanishi [62]
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techniques are adopted by the authors to improve the final

performance. The experiments involved 31 users (male

university students), and the results show that by increasing

the stimulation by images, the EER value decreases, and

the proposed method achieves a EER ¼ 02:00% when five

images are used. In addition, they experimented that the

authentication performance improves by applying artifact

countermeasure and digital filter, without the need to

change the feature extraction and ML modalities. The

experimental results show as best performance an

EER ¼ 00:94%.

½W06; 2018; Visual� the authors propose an approach that

exploits a convolutional neural network (CNN) with raw

SSVEPs, intending to design an automatic user identifica-

tion system based on the EEG data. In such a context, they

perform a comprehensive comparison between the CNN

performance with raw signals and other canonical

approaches, using two datasets composed, respectively, of

4 and 10 users. The validation process indicates that the

proposed approach outperformed the other methods taken

into account as competitors. The experimental results show

an averaged identification accuracy = 96.80%, an averaged

verification accuracy = 98.34%, a FAR ¼ 01:53%, and a

TAR ¼ 97:09%.

½W07; 2019; Visual� this work implements a face image-

based rapid serial visual presentation (RSVP) paradigm

for the user authentication. It uses two different biometric

aspects, face and EEG, which are combined to generate

more specific and stable patterns for user authentication.

The event-related potential (ERP) approach exploits self-

face and non-self-face (familiar and not familiar), and the

performed experiments evaluate the differences in terms of

performance. In more detail, the approach uses an

authentication approach based on the hierarchical dis-

criminant component analysis (HDCA) and the genetic

algorithm (GA) methods to define user-specific models

with optimized fewer channels. The experimental results

show as best performance a CRR ¼ 94:26%, a

FAR ¼ 06:27%, and a FRR ¼ 05:26%, under certain

conditions.

½W08; 2019; Visual� this work proposes a combination of

the steady-state visually evoked potential (SSVEP) and the

event-related potential (ERP) features, to discriminate the

distinction between users, exploiting a long short-term

memory (LSTM), a type of recurrent neural network, for

the analysis. In more detail, they start collecting raw EEG

data related to 20 users stimulated by a square SSVEP at

7.5 Hz, using targeted and nontarget Snodgrass and Van-

derwart pictures [80] as ERP stimuli, subsequently, they

applied a series of preprocessing methods on this raw data

(i.e., notch filter, band-pass filter, and eye blink artifacts

removal), finally, they used an LSTM neural network to

analyze the data and perform the user classification. The

validation of this approach was made in terms of false

acceptance rates (FAR) and false rejection rates (FRR),

and the experimental results show a high verification

accuracy, then its potential suitability in the biometric

applications; The experimental results show as best per-

formance a CRR ¼ 91:44%, a FAR ¼ 06:58%, and a

FRR ¼ 10:53%.

½W09; 2019; Visual� a novel approach for the user iden-

tification through EEG data has been followed in this work,

where the authors take into account three different features,

evaluating them based on the energy and the entropy

measured in the EEG sub-band rhythms, recurring to a

narrow-band Gaussian filter and a wavelet packet decom-

position (WPD). The experimental phase involved 21

users, whose EEG has been recorded while they listened to

modulated auditory tones, during a single- and two-session

configuration. The final classification was based on the

discriminant analysis, and the experimental results show as

best performance a CRR ¼ 97:18% and a EER ¼ 04:30%.

In addition, the authors experimented that, in the context of

two-session setup, the WPD entropy features remain

stable over time, differently from the other features with a

decrease of 01:00%, and an increase of 00:45% related,

respectively, to the CRR and EER value, an interesting

aspect for what concerns the biometric applications of the

proposed approach.

½W10; 2019; Auditory� the authors propose a biometric

approach where EEG and ultrasound EP are combined. In

more detail, the user features are extracted from the EEG

power spectra through the principal component analysis

(PCA) technique, and the verification process is instead

performed using the SVM algorithm. The validation pro-

cess involved 10 users, whose EEG data have been mea-

sured 10 times, and it was performed in the same

environment, as well as the definition of the ultrasound

stimuli. In more detail, three types of stimuli (created from

high-resolution sounds) have been used: personal stimuli

selected by the users, stimuli selected by other users, and

stimuli that are the same for all users. The experimental

results show as best performance an EER ¼ 4:4%.

½W11; 2019; Visual� this work proposes an EEG-based

individual identification approach that exploits code-mod-

ulated visually evoked potentials (CVEPs) In more detail,

through a series of experiments, the authors compared eight

CVEP patterns, involving 25 users, to test the feasibility of

such an approach as a biometric recognition system. In

addition, to further evaluate the influence of the inter-ses-

sion variability, they recorded two data sessions for each

user on different days, measuring the intra-session and
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cross-session performance. In such an experimental con-

text, they obtained a CRR ¼ 100:00% during the intra-

session identification, using 05.25 s of EEG data (average

of five trials), whereas they obtained a CRR ¼ 99:43%

during the cross-session identification, using 10.50 s of

EEG data (average of ten trials). The results, therefore,

indicate that the proposed approach can be profitably used

in the context of biometric user recognition systems.

½W12; 2020; Auditory� the authors, based on their previ-

ous studies in this field, where they experimented with

different EEG stimuli, propose a novel framework for the

user authentication based on the EEG and music stimuli.

The experiments involved the EEG data related to 16 users,

recorded once a week for 3 weeks, and the stimuli are

related to various types of music. The idea behind this

approach is to recognize the users based on the different

responses to the music, in terms of EEG data. The exper-

imental results indicate an average accuracy across all

recording weeks of 91:01%. The best performance are an

CRR ¼ 96:75% and a FAR ¼ 03:72%.

½W13; 2020; Auditory� this work proposes a biometric

user identification approach based on EEG data, ultra-

sound, and multidimensional nonlinear features. The

approach used is similar to that of a previous work by the

authors (i.e., W10), where to extract the individual features

related to a user from the log power spectra of the EEG

data, they adopted the principle component analysis (PCA),

using SVM as ML classification algorithm. In addition, in

this work, they introduced nonlinear features based on the

chaos analysis, intending to improve the feature extraction

process by adopting a multidimensional nonlinear features

approach. In this regard, they join the results related to this

approach (related to all electrodes) with the spectral fea-

tures, reaching performance of EER ¼ 00:00%, although

this result requires a high computational cost, then it is not

applicable in a real-world application context. Summariz-

ing, in this new work of the authors, the validation process

involved 10 users, and the obtained best performance for a

single electrode is EER ¼ 22:00%, whereas it is EER ¼
04:40% for multiple electrodes, where the results are

combined by following a majority decision criterion.

Experiments, therefore, indicate the possibility of using

this approach in a biometric recognition system context.

½W14; 2020; Visual� in this work, the authors propose a

mechanism of user authentication based on EEG altered by

visual stimuli that exploit the wavelet transform as data

analysis and feature extracting method (including time

elements) to improve the accuracy in the user detection

task. With the aim of further improving the performance,

they experimented some approaches (i.e., SVM and ANN),

achieving the best result of EER ¼ 08:10% after training

neural networks using ensemble learning with 30 ANNs.

½W15; 2020; Visual� the authors propose a biometric sys-

tem for the user identification based on EEG data altered by

photo stimuli. The validation process was performed by

involving 5 users in the context of five EEG recording

sections made through a Muse headband device, using a

backpropagation neural network (BNN) under the K-fold

cross-validation criterion (10 test data and 15 training

data), adopting for the user EEG data characterization the

Hjorth Descriptor [65], a method used for observing nat-

ural biological signals. The data is recorded from 5 users

that have been stimulated by using a series of pictures for 1

min, repeating the session five times, and in such an

experimental context, the best performance was CRR ¼
100:00% under the used configuration.

½W16; 2020; Auditory� this work exploits the ultrasound

stimuli for the EEG stimulation, with the motivation of the

authors that in this way the users are not distracted from

their current activity during the recognition process, unlike

what happens when audible stimuli are used. It should be

noted that this work approach is in line with others previ-

ously experienced by the authors, the last of which is the

one described in W13. The generation of the ultrasound

stimuli was made by removing, through a digital high-pass

filter, the frequency components of 20 kHz or less in the

favorite songs of the users involved in the experiments (i.e.,

10), playing the ultrasound in a silent environment for 30 s.

The proposed approach introduces a new nonlinear feature,

the fractal dimension, evaluating its introduction by mea-

suring the performance on its own and in combination with

the other conventional ones. Based on the performed

experiments, they get an ERR ¼ 00:00% using 5 features,

14 electrodes, and 70 SVM evaluation models, obtaining

the same result when they reduce these models to 24.

½W17; 2020; Visual� the authors of this work combine

the EEG data with a stimulus mode with the left-and-right

balance to evoke CVEPs, to perform a user identification

task. In more detail, they realize such stimuli using two

sides of a screen placed, respectively, on the left and on the

right visual field of the user, which flash at the same time

according to two different sequences. The users are guided

to gaze at the left side for the half time of the experiment,

and at the right side for the other half of the time, and the

related EEG data are used to define their unique brain

waves patterns. The experiments involved 20 users, and the

results show as best performance a CRR ¼ 92:50%. An

additional analysis made by the authors proves the stability

over time of the proposed approach, which appears suit-

able for the biometric recognition application.
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½W18; 2021; Auditory� this work proposes a feasible

approach (in terms of acquisition time and low-cost EEG

device) for the biometric identification of users based on

two protocols: eyes closed (EC) and visual stimulation. It

analyzes the pairwise correlation of the preprocessed EEG

data related to each scalp electrode, defining in this way a

feature vector, then the data are analyzed and classified

using the support vector machine (SVM) algorithm. The

validation process involved 8 users and the EEG recording

was divided into two sessions, morning and afternoon ones.

The experimental results show as best performance

CRR ¼ 99:06%, under certain conditions.

½W19; 2021; Auditory� in this approach, the authors use

single-trial familiar-name AEPs detected from two frontal

EEG electrodes. The experiments involved 20 users and the

proposed approach tests several different combinations of

ANN architectures for feature extraction and classification.

They get the best results using the 1D convolutional neural

network (1D-CNN) with LSTM, demonstrating as a sci-

entific contribution that the use of familiar-name AEPs

from frontal EEG electrodes can simplify the acquisition

process in terms of the required time. The experimental

results show as best performance CRR ¼ 99:53% and

HTER ¼ 00:24%.

½W20; 2021; Visual�: a system framework for VEP-based

biometrics, where the authors compare the performance of

three types of VEP signals oriented to the user identifica-

tion is proposed in this work. In more detail, FVEP, SVEP,

and CVEP techniques have been tested on 21 users during

two different days, to evaluate the related CRR. For this

goal, the authors developed a template-matching-based

recognition algorithm for VEP detection in a brain–com-

puter interface (BCI) aimed for user identification. The

experimental results show that the best performance (i.e.,

CRR ¼ 100:00%) is reached using the CVEP technique

based on 03.15 s of VEP data, a result that indicates the

potential feasibility of this approach for the user

identification.

½W21; 2021; Visual�: this work proposes the use of EEG

data as a biometric approach, in the context of which the

wavelet packet decomposition (WPD) technique has

experimented as a feature extraction method. The WPD is

used to get new features that can improve the information

extracted from the EEG data when visual stimuli (familiar

and unfamiliar images) are displayed to the user, whereas

the data have been processed by using the SVM, KNN, and

RF algorithms. The experiments involved 13 users and the

results have been evaluated in terms of false acceptance

rate (FAR) and false rejection rate (FRR). The results

show a FAR value lower than FRR in terms of error rate,

and SVM as the best algorithm. The best performance are a

CRR ¼ 92:80%, a FAR ¼ 00:41%, and a FRR ¼ 4:99%.

½W22; 2021; Visual�: the authors of this work proposes an

approach for a biometric user identification based on the

EEG data using a benchmark dataset related to EEG data

acquired under different visual and non-visual stimuli

through a low-cost EEG device. The used dataset contains

EEG recordings from 21 users acquired during three sep-

arate sessions, each 1 week apart. Their results indicate that

some EEG device electrodes provide effective information

that leads to better accuracy, regardless of the features and

the stimuli exploited in this process, observing that the best

performance in this regard is related to the use of the mel-

frequency cepstral coefficients (MFCCs). In other words, a

certain combination of fewer electrodes potentially leads

toward high performance in the user identification task,

allowing us the use of low-cost EEG detection devices. The

experimental results show as best performance an

CRR ¼ 29:69%, obtained using the P8 electrode and the

MFCC features for the flashing VEP at 07.00 and 10.00

Hz), observing that this approach underperforms the

baseline approaches [4] based on all the electrodes, which

offer an CRR ¼ 40:25%.

½W23; 2021; Auditory�: this work proposes a DL approach

for the longitudinal assessment of EEG data aimed to

design a biometric authentication system based on auditory

stimuli. In more detail, such an approach records the EEG

data from 13 users during three sessions, using about a year

as the average time span between the last session and the

first two. The EEG data are encoded into an embedding

space, where the distance between cross-session features is

minimized from the same users, whereas it is maximized

from different users. In addition, the approach adopts an

encoder with a custom convolution layer aimed to extract

improved functional connectivity features over the stan-

dard convolution. The experimental results indicate that

this approach overcomes the other state-of-the-art DL

frameworks and BCI techniques in terms of EER and CRR,

showing also a reduced acquisition time. The best perfor-

mance is an EER ¼ 05:00%.

½W24; 2021; Vibration�: the authors propose a study

aimed to detect stable EEG biometric data to use in the

context of a user identification system. In this regard, they

exploit imperceptible vibration EEG stimuli, introducing a

method able to repeat these stimuli over a short time. The

validation of the proposed approach involved 10 users,

whose EEG data have been captured when they were in a

resting, closed-eyed, and seated position. The experimental

results show that using EEG data immediately after a short

time of stimulation leads toward best performance than

those obtained using continuous stimulation. The EEG data

11638 Neural Computing and Applications (2023) 35:11625–11651

123



are processed recurring to the SVM algorithm, and the

obtained best performance is an EER ¼ 11:00%.

½W25; 2021; Vibration�: also in this work is aimed to

design an EEG-based user authentication system by

exploiting imperceptible vibration stimuli. According to

their previous knowledge of the EEG effects related to

tactile stimulations, where they have experienced that the

evoked responses occur in a short time, in this work they

propose to measure evoked EEG data for 100 ms. The

experimental results, which involved 10 users, demonstrate

that the stimulation based on imperceptible tactile stimuli

is effective to define a user identification EEG-based sys-

tem. The measured best performance of EER ¼ 24:00%
outperforms that obtained in their previous work [76],

where they exploited the imperceptible tactile stimuli in the

same context.

½W26; 2022; Visual�: In this work, the authors exploit

individual-related stimuli, instead of common ones, with

the aim of improving the biometric system performance,

using EEG data stimulated by imperceptible visual stimu-

lation. In addition, the proposed approach exploits a time

zone and frequency sub-bands feature extraction method in

order to improve the verification performance. The results

of the validation process, where have been involved 8

users, show EER ¼ 6:10%.

4 Discussion

In this section, we carry out an in-depth analysis of the

literature works taken into consideration.

First, Sect. 4.1 discusses the main trends by delving into

the most researched topics (Sect. 4.1.1) and the publication

distribution (Sect. 4.1.2). Next, Sect. 4.2 focuses on model

comparison, detailing algorithms (Sect. 4.2.1) and their

performance (Sect. 4.2.2). We then further our comparison

with Sect. 4.3, which reviews the architectures analyzing

both the data collection protocols (Sect. 4.3.1) and the

hardware used (Sect. 4.3.2). Next, Sect. 4.4 examines the

challenges of this research field, discussing first the com-

mon challenges (Sect. 4.4.1) and then the specific ones

(Sect. 4.4.2). Finally, Sect. 4.5 presents future research

directions, dealing with emerging ideas (Sect. 4.5.1) and

suggesting possible future developments (Sect. 4.5.2).

4.1 Main trends

This section describes the main trends in this research area.

First, we start presenting the research directions which

brain–computer interface researchers investigate. Later, we

explore the publication distribution, comparing the

distribution of brain–computer interface papers with the

distribution of the works we selected.

4.1.1 Brain–computer interface research topics

As highlighted by the previously discussed works, as well

as in several recent studies in the literature [10, 102], the

main direction that characterizes research in the brain–

computer interface (BCI) field is focused on the definition

of systems capable of maximizing performance in terms of

ease of use, low cost of hardware, and accuracy of iden-

tifications, while minimizing known problems through

increasingly sophisticated protocols and techniques.

In more detail, BCI has interesting applications in very

heterogeneous areas such as security, communications,

control, transport, medicine, and entertainment [102]. The

literature works show an increasing interest for these

approaches by researchers around the world, with an

interest in the development of applications even very dis-

tant from the canonical BCI area of the past (i.e., the

medical one). Indeed, the majority of the works in the lit-

erature are not focused on the medical field (which was the

reference domain in the past), with almost 60% of the

works in different fields and about 30% in the medical one

[3, 90].

In addition, in the field of biometric authentication

systems, the literature highlights how systems based on

EEG signals represent the best solution for the future,

thanks to their portability, ease of use, and low cost com-

pared to the security they offer [10]. This distribution is

most likely due to the diffusion on the market of affordable

hardware which has helped to give life to numerous types

of research in other fields such as that of biometric iden-

tification of users that we have considered in this work.

4.1.2 Publication distribution

As regards the distribution of publications in the world, as

underlined in several studies in the literature [90], Asia has

the highest number of publications related to EEG-based

BCI applications, followed by Europe and North America

(i.e., between 2009 and 2019, 111 publications in Asia, 56

in Europe, and 27 in North America). However, it should

be noted that despite Asia presenting the highest number of

publications in this field, of the 37 countries involved in the

world, the largest number of them are European (i.e., 18).

Another important trend that emerges from the study of the

literature is the growing cooperation between researchers

from different countries, as well as the use of increasingly

less invasive and easy-to-implement data acquisition

techniques.

Focusing on the works we selected, the literature of the

last 6 years indicates a growing interest in this research
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field, especially in recent years since we have eight works

in 2021 against the three works in 2017 (we do not take in

consideration 2022 because not all the related literature is

visible due to publication times), with some works

improved over the years by the same authors (e.g., W02,

W10, and W13), and this interest is also evident in the

context of university theses/dissertations [72]. As we

already noted for the BCI publications, even in the case of

the works we selected, we identify that Asia has the highest

number of publications (21), followed by North America

(3) and Europe (2).

4.2 Models

This section discusses the models proposed by the selected

works, focusing on the algorithms (Sect. 4.2.1) and their

performances (Sect. 4.2.2).

4.2.1 Algorithms

Recent literature in the BCI field shows a large use of

models based on algorithms related to deep learning tech-

niques, Bayesian networks, support vector machines, con-

volutional neural networks, and linear discriminant

analysis, as they are able to limit the problems that affect

the BCI systems (e.g., signal noise, training time, unsta-

ble patterns, etc.), improving the overall performance

[102].

In more detail, a recent study in this field [90] shows that

the most used classification algorithm in the BCI applica-

tion based on EEG data is the one that exploits the linear

discriminant analysis (35 of the 114 publications analyzed),

followed by the support vector machine (24 of the 114

publications analyzed), whereas the remaining publications

are distributed on numerous other methods (e.g., naive

Bayes, random forests, etc.), as reported, in percentage

terms, in Fig. 6.

Specifically, as regards the systems considered by us in

this work, aimed at the biometric identification of users by

exploiting the combination of EEG signals and EP stimuli,

the literature examined shows a high level of heterogeneity

as regards the used models. In more detail, many of the

approaches combine multiple techniques, such as the mel-

frequency cepstral coefficients (MFCCs) and the auto-re-

gressive (AR) reflection coefficients to discriminate the

features of the users (W1), the cross-correlation coefficient

(CCC), and the support vector machine (SVM) algorithm

(W5), the hierarchical discriminant component analysis

(HDCA) and the genetic algorithm (GA) (W7), the narrow-

band Gaussian filter and the wavelet packet decomposition

(WPD) technique (W9), the principal component analysis

(PCA) and the support vector machine (SVM) algorithm

(W13), and the 1D convolutional neural network (1D-

CNN) with long short-term memory (LSTM) (W19). In

this context, there is a widespread use of techniques such as

the principal component analysis (PCA) (W7, W10, and

W13) and the wavelet packet decomposition (WPD) (W9,

W14, and W21) for their capability to analyze complex

information such as EEG data. For the same reason, vari-

ous approaches make use of artificial neural networks

(ANN), such as the convolutional neural network (CNN)

(W6 and W23), the long short-term memory (LSTM) (W8

and W19), the backpropagation neural network (BNN)

(W15), and the 1D convolutional neural network (1D-

CNN) (W19). Further approaches are based on techniques

such as the Fisher linear classifier (FLC) (W4), the mel-

frequency cepstral coefficients (MFCCs) (W22), and other

techniques/strategies such as Euclidean distance and fractal

dimension.

Fig. 6 EEG-based BCI

application classification

algorithm usage
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An overall analysis of the used models indicates inten-

sive use of techniques and/or strategies capable of breaking

down and analyzing the EEG data in the most in-depth way

possible, in order to minimize the problems due to the poor

stability of the EEG patterns over time. In this regard, it is

not easy to identify the best state-of-the-art architecture as

the performances achieved by each work are strongly

related to numerous parameters such as the number of users

involved in the experiments, the number and the distance

between the acquisition sessions, and so on. In any case,

the comparison between the works of recent years and the

more recent ones shows an effort by researchers toward

models capable of exploiting low-cost, easily available,

and simple-to-use hardware, as it is the only one that can

allow widespread use as a biometric user identification

approach. In light of the ever-increasing performance of

low-cost EEG devices and the availability of ever more

sophisticated and performing models capable of exploiting

them, it is possible to foresee an increasingly widespread

use of this type of biometric identification approach in the

near future.

4.2.2 Performances

In this section, we analyze the performances of the selected

works. Our analysis considers two fundamental aspects: the

experimental environment and the biometric user recog-

nition system performance. More specifically, we compare

the following aspects: the number of users involved in the

experiments, the number of data acquisition sessions, the

data collection protocols adopted in these sessions, and the

system’s performance regarding the correct number of user

identifications carried out.

According to this goal, Table 4 reports, for each of the

works in Table 3, the number of users involved in the

validation process, the exploited type of stimuli, and the

measured performance. We highlight that, to compare the

performance related to all the works, although most of

them provided the value of CRR, we assume that CRR ¼
1� EER when CRR is not provided. In light of the dif-

ferent number of users involved in the experiments, we

propose an assessment in terms of weighted average, using

the metric formalized in Eq. 1, where for the literature

work w 2 W the CRR performance and the involved

Table 4 Experimental results
Work ID Publication year Involved users (max) Type of stimulus Best CRR (%) performance

W01 2017 25 Visual 96.00

W02 2017 20 Visual 77.00

W03 2017 04 Visual 87.50

W04 2018 10 Visual 82.30

W05 2018 31 Visual 98.00

W06 2018 10 Visual 96.80

W07 2019 15 Visual 94.26

W08 2019 20 Visual 91.44

W09 2019 21 Visual 97.18

W10 2019 10 Auditory 95.60

W11 2019 25 Visual 100.00

W12 2020 16 Auditory 96.75

W13 2020 10 Auditory 95.60

W14 2020 20 Visual 91.90

W15 2020 05 Visual 100.00

W16 2020 10 Auditory 100.00

W17 2020 20 Visual 92.50

W18 2021 08 Auditory 99.06

W19 2021 20 Auditory 99.53

W20 2021 21 Visual 100.00

W21 2021 13 Visual 92.80

W22 2021 21 Visual 29.69

W23 2021 13 Auditory 95.00

W24 2021 10 Vibration 89.00

W25 2021 10 Vibration 76.00

W26 2022 08 Visual 93.80
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number of users in the experiments are denoted, respec-

tively, with CRRw and jUjw.

Performance ¼
PW

w¼1ðCRRw � jUjwÞPW
w¼1 jUjw

ð1Þ

The results are shown in Table 5: We exclude W22 (it uses

visual stimuli) since, as previously discussed, its scientific

contribution is not related to the best CRR. According to

this metric, the best average performances calculated sep-

arately for each different type of stimulus are: 93:83% (16

works, excluding W22) for approaches using visual stimuli,

97:45% (7 works) for those using auditory ones, and

82:50% (2 works) for those using vibrations ones. The

results therefore show performance in accordance with

those of other widely used biometric systems, albeit with

the limits before discussed.

The first evident aspect of the results is that four works

get a CRR of 100% or an error rate of 0.00% (i.e., W11,

W15, W16, and W20), as shown in Fig. 7, where the results

of Table 4 are sorted in descending order of performance.

This should mean that strategies able to provide ideal

results have been identified, but actually these results are

strictly linked to specific experimental environments and to

a small number of users in the validation process (none of

these four approaches use more than 25 users and none of

the discussed approaches use more than 31 users). It must

be underlined that the performances taken into considera-

tion have to be considered as the best case, although,

regardless they refer to particular experimental conditions,

they offer an interesting scientific contribution in the field

of the biometric applications based on the EEG and evoked

potentials.

A separate discussion must be made for the less per-

forming approach (i.e., W22) since the authors’ goal was to

investigate the performance related to each individual EEG

channel in the context of recognition systems based on

low-cost consumer-grade EEG devices. For this reason, the

scientific contribution is not related to the best CRR. In

their study they demonstrate that a combined use of elec-

trodes leads toward better performance than the single-

electrode solutions, offering valuable information about the

suitable combination of them. The best result they declared

is related to the highest accuracy achieved using a single

electrode.

Also in the case of two other works that share two

authors (W24 and W25) it is necessary to make some dif-

ferentiation, first of all with regard to the used stimulus

(i.e., imperceptible vibrations), which reaches lower per-

formances than the other ones, even if it exists a numeric

difference concerning the number of works in literature,

secondarily, because, even in this case, the real scientific

contribution does not refer to the improvement of the state-

of-the-art performance (they get a best average perfor-

mance of 82:50%) but to the study of which is the best

configuration during data acquisition (electrodes, discrim-

inative features, etc.). In addition, in both works the authors

indicate the need to increase the number of users in order to

get valuable/reliable experimental results, confirming our

opinion in this regard.

About the type of stimulus that has proved most effec-

tive, we can observe how the best approaches are related to

different type of stimuli (respectively, CVEP, VEP, AEP,

and VEP), indicating that the improvements are not mainly

related to them but to the adopted experimental method and

strategy, although it should be pointed out that the choice

of the optimal parameters of these stimuli (e.g., frequency

and duration) must be experimentally defined and it is

strongly related to the experimental conditions (e.g.,

environment, users, etc.).

4.3 Architectures

This section studies the architecture of the surveyed works

by inspecting protocols for collecting data (Sect. 4.3.1) and

hardware (Sect. 4.3.2).

Table 5 Weighted average CRR

performance by stimulus type
Type of stimulus Number of works Weighted average CRR (%) performance

Visual 16 93.83

Auditory 7 97.45

Vibration 2 82.50

Fig. 7 Best CRR performance
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4.3.1 Data collection protocols

An important aspect that affects all the experiments carried

out in the works we have taken into consideration and

which determines the quality of the proposed work is the

protocol used to collect the EEG data. The study of the

literature shows a great heterogeneity in the protocols

adopted by the authors, considering that they involve dif-

ferent elements, such as the number of involved users, the

number of data collection sessions, the duration of each of

these sessions, and the distance between them. The litera-

ture works of the last six years considered by us present

large differences in these aspects: For instance, we observe

an average number of users of 15, with cases in which there

are only 4 [86] users and cases that instead involve 31 [97].

In this regard, analogously with any type of scientific

experimentation, the value and validity of the results are

strongly correlated with the number of samples (users)

involved in the process, and this is an even crucial aspect in

a domain such as that of the EEG data, which is charac-

terized by a high degree of heterogeneity, as previously

discussed in Sect. 4.4. However, it should be noted that

some of the authors of the discussed literature work high-

light this type of limitation, indicating the need to perform

future works with a greater number of users involved in the

experiments [54, 75].

In such a context, we compared the different experi-

mental environments related to all the works in Table 3,

reporting the results in Table 6. On the basis of them, we

can observe that different data collection protocols have

been adopted by the authors: In some cases, the EEG data

acquisition sessions are few and little spaced from each

other in terms of time, e.g., [53, 86, 95, 97]; in few cases,

they involve a greater number of sessions but carried out

consecutively, e.g., [52, 66]; in other cases, we instead

have a considerable distance between sessions, a configu-

ration usually aimed at verifying the stability of the EEG

patterns over time, e.g., [42, 71, 104]. From the analysis of

the tasks performed in each individual session, we can

observe differences based on the type of stimulus used. The

tasks using visual stimuli are characterized by a high

number of trials, each of concise duration in which one or

more images are shown to the users. Typically, the images

shown alternate between images familiar to the user (e.g.,

chosen by the user before the session begins) and unfa-

miliar images. In contrast, auditory stimuli works have

fewer trials and longer overall duration. The longer dura-

tion is also due to the use of prolonged pauses between

stimuli; indeed, the literature indicates that such pauses are

necessary to achieve greater accuracy in the results.

Finally, the two works based on vibration stimuli perform

the estimation for a short time (0.1 s) interspersed with 5-s

pauses for a total number of trials of 100. For reasons of

completeness, It should be added that some works in the

literature discuss of the EEG data acquisition protocols in

terms of acquisition modalities, usually distinguishing

three of them: resting states, mental tasks, and tasks with

external stimuli [7]. In the first two modalities (i.e., resting

states and mental tasks) the acquisition process does not

need additional hardware/software except those related to

the EEG device, whereas the third modality (i.e., tasks with

external stimuli) requires an appropriate hardware/software

for the generation of the external stimuli. This catego-

rization was not considered by us since all the discussed

works fall into the third modality.

4.3.2 Hardware

The literature works considered by us (i.e., those relating to

techniques that combine EEG signals with EP stimuli),

show the use of hardware not included among the low-/

medium-cost devices previously listed in Table 2, adopting

more expensive (around several tens of thousands of euros)

and/or professional hardware (i.e., W01, W04, W07, W09,

W11, W12, W17, W19, W20), whereas three works (i.e.,

W06, W08, and W23) do not specify this information (the

absence of information is indicated with NS in Table 7).

In any case, the literature works indicate that is possible

to perform experiments and obtain interesting results in this

research domain even using low-/medium-cost EEG hard-

ware, as demonstrated by 13 of the 26 works taken into

consideration, and highlighted by the percentage distribu-

tion of the hardware reported in Fig. 8.

4.4 Challenges

This section presents the challenging problems in the

context of the approaches based on the EEG data, which

we divide into domain challenges (Sect. 4.4.1) and specific

challenges (Sect. 4.4.2).

4.4.1 Domain challenges

Following, we describe the open problems affecting all the

applications that exploit the EEG data. Data Complexity

most of the problems that make user recognition based on

EEG data a challenge are mainly related to the nature of the

data, as they are complex, nonlinear, and non-stationary

[82]. In other words, the EEG data can be considered sta-

tionary only within short intervals, and for this reason

usually is applied a short-time windowing approach to

identify the local discriminating features, exploiting tech-

niques such as the stationary subspace analysis (SSA),

which is aimed to find a linear coordinate transformation

that factorizes the input data into stationary and non-sta-

tionary components [91]. This work [12] investigates the
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factors that influence the performance of the biometric

systems based on EEG data, while this work [7] provides a

survey on methods and challenges in EEG-based

authentication;

User Heterogeneity a well-known problem in the liter-

ature further complicates data processing: There are huge

differences among users in the EEG data, as demonstrated

in this study [45] involving 150 users. In addition, the

different types of EEG signals and their non-stationary and

low signal-to-noise ratio often make it difficult to extract

the information that needs for a specific task [93];

System Calibration another important problem is related

to the fact that any EEG-based approach requires that,

before the data acquisition session, users must undergo a

system calibration. In such a context, this problem is faced

by the transfer learning [93], a machine learning (ML)

approach aimed to use a model defined for a task as starting

point for a new model related to another task. In our case, it

represents a method to reduce the calibration requirements

of a biometric recognition system based on EEG data since

it adjusts the evaluation model via prior knowledge to

make it adaptable for our new task. This approach is lar-

gely used in different domains (e.g., image recognition,

positioning systems, language translation, etc.). In the

domain taken into consideration in this work it offers a

twofold advantage because it reduces the information

requirement, and allows us to define an adaptive models;

Data Stability a further transversal problem that affects

all the EEG-based approaches, is related to the repeata-

bility of the recognition process [36]. It occurs because the

acquired data (brain waves patterns) are influenced by

different elements such as the state of relaxation of the user

during the data acquisition, the number of sessions used for

the experiments, the movements of the user during the data

acquisition, and so on. In addition, even under the same

conditions, the data vary over time, and this implies the

Table 6 Experimental environment

Work

ID

Involved

users

Number of

sessions

Session details: trial duration and

repetitions

Session configuration

W01 25 02 N.A. 2 sessions with an average time interval of 15 days

W02 20 10 6 s—55 times 2 sessions a day for 5 days

W03 04 10 17 s—20 times 6 sessions online and 4 sessions offline

W04 10 06 1.25 s—370 times 6 sessions over 6 weeks with the same time interval

W05 31 03 10 s—25 times 3 sessions in a day for each user

W06 10 03 N.A. 3 sessions with the 2nd and 3rd ones after 3 and 6 weeks

W07 15 02 3 s—200 times 2 sessions with an average time interval of 30 days

W08 20 02 10.3 s—5 times 2 sessions for each user made in different days

W09 21 02 360 s total 2 sessions with an average time interval of 30 days

W10 10 10 360 s total 10 sessions for each user with a different order of stimuli

W11 25 02 2 s—100 times 2 sessions with an interval between 1 and 103 days

W12 16 03 310 s total 1 session a week for 3 weeks

W13 10 04 300 s total 4 sessions for each user

W14 20 10 1 s—55 times 10 sessions for each user

W15 05 05 60 s total 5 sessions for each user

W16 10 08 30 s total 8 sessions for each user

W17 20 20 3 s—53 times 20 sessions for each user

W18 08 02 2 s—120 times 2 sessions for each user divided into morning and

afternoon ones

W19 20 04 90 s—4 times 4 sessions for each user

W20 21 02 66.15 s total 2 sessions with an average time interval of 5 days

W21 13 07 720 s total 7 consecutive sessions for each user

W22 21 03 N.A. 3 sessions with a time interval of 7 days

W23 13 03 300 s total 3 sessions

W24 10 10 5.1 s—100 times 10 sessions for each user

W25 10 10 5.1 s—100 times 10 sessions for each user

W26 08 08 Several values 8 subjects�3 datasets for training, 8 subjects�8 datasets

for testing
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Table 7 Experimental hardware

Work ID EEG device Used channels Bit resolution Sampling rate

W19 Brain products actiCHamp 64 24 500 Hz

W01 EB-Neuro Galileo be light 19 12 32 KHz

W02 Emotiv Epoch ? 14 16 128 Hz

W03 Emotiv Epoch ? 14 16 128 Hz

W05 Emotiv Epoch ? 14 16 128 Hz

W10 Emotiv Epoch ? 14 16 128 Hz

W13 Emotiv Epoch ? 14 16 128 Hz

W14 Emotiv Epoch ? 14 16 128 Hz

W16 Emotiv Epoch ? 14 16 128 Hz

W18 Emotiv Epoch ? 14 16 128 Hz

W21 Emotiv Epoch ? 14 16 128 Hz

W22 Emotiv Epoch ? 14 16 128 Hz

W24 Emotiv Epoch ? 14 16 256 Hz

W25 Emotiv Epoch ? 14 16 256 Hz

W26 Emotiv Epoch ? 14 16 256 Hz

W07 G.Tech g.USBamp 16 24 2400 Hz

W15 InteraXon Muse 4 12 500 Hz

W04 Neuroscan Nuamps 40 22 1000 Hz

W11 Neuroscan Synamp2 9 24 1000 Hz

W17 Neuroscan Synamp2 9 24 1000 Hz

W20 Neuroscan Synamp2 9 24 1000 Hz

W09 Nicolet EEG wireless amplifier 7 24 12 KHz

W06 NS 8 NS 256 Hz

W08 NS 6 NS 250 Hz

W23 NS 7 NS 12 KHz

W12 OpenBCI utracortex mark IV ? cyton board 8 24 250 Hz

Fig. 8 EEG hardware

distribution
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adoption of more sophisticated techniques than those

commonly used with other biometric approaches [40]. A

study aimed to investigate this problem was performed in

Pham et al [57], where based on the experimental results

the authors demonstrate that some emotions should be

considered in order to improve the EEG data stability in the

context of the biometric user authentication applications;

Electrodes Minimization last but not least is the problem

related to the need to use a reduced number of electrodes

during the biometric process of user recognition based on

EEG data. This problem arises from the need to obtain

good performance even using a reduced number of elec-

trodes, an indispensable condition for the widespread use

of the EEG data as a biometric user recognition system. In

this regard it should be observed that the EEG devices used

in many literature works use a high number of electrodes

[7, 8] (an average of 33), whereas many EEG devices in the

medical field also use 64 electrodes, then their number is

much higher than that of the low-cost commercial devices.

Several studies in the literature investigated about this

problem, such as in Moctezuma and Molinas [47], where

the authors propose a biometric system based on EEG data

designed with a minimal subset of EEG channels, or in

[38], which proposes a deep-learning-based technique to

automatically search for the minimum number of EEG

channels.

4.4.2 Specific challenges

In the context of biometric user identification mainly

emerges a twofold type of problem, one related to the

nature of the involved data and another related to the data

acquisition process.

The first type of problem is related to the non-stability of

the EEG patterns over time since the involved data are

complex, nonlinear, and non-stationary, and these charac-

teristics do not allow us to obtain useful information from

these signals in the time domain, directly by observing

them Subha et al. [82]. This is a challenge that has been

faced in many works of the literature, in a parallel way to

the works addressed to exploit the EEG data in the bio-

metric field. In this regard, it should be noted that the

stimulation of users (i.e., through the evoked potentials

techniques) during the acquisition of EEG data is mainly

aimed at reducing the effects of this problem, creating

conditions in which the brain waves signals show greater

repeatability compared to the EEG data acquired without

any external stimulus, in accordance with what the dis-

cussed works discussed highlight.

The second problem instead refers to aspects such as the

user heterogeneity in terms of EEG waves, and the need to

perform a calibration of the acquisition/stimulation system.

This is an aspect implicitly or explicitly reported in many

of the discussed papers, which proposed approaches that

are not suitable for real-world biometric user identification

applications, precisely due to this issue. Some possible

examples are the discussed works that use professional

high-cost and big-sized EEG equipment, e.g., [33], where

in addition to the high price (unsuitable for large-scale

applications), they need a large number of electrodes,

whose application on the user’s scalp requires a long time,

as well as the use of a conductive paste since they do not

adopt the dry EEG electrodes technology that is used in

almost all the low-cost EEG devices such as those reported

in Table 2. In such a context, it should be underlined that a

widely usable biometric user identification system should

be based on hardware that does not require extensive and/

or complicated preparation/calibration, in order to be used

by the users themselves, without the need for an operator

who manages the operations, similarly to the most common

biometric recognition systems widely used today [14].

Representative examples of the effectiveness of some

approaches/strategies in the considered literature can be

found in Piciucco et al. [58], where the experimental results

related to the proposed SSVEP approach demonstrate the

existence of stable characteristics in the EEG response

across several acquisition sessions, or in Mu et al. [48],

where the experimental results prove that the proposed

visual stimulation approach can improve the stability of the

EEG signals over time. Other significant examples are the

work in Zeng et al. [103], where the EEG-based user

identification system stability has been tested for a 30-day

averaged time interval, or that in Seha and Hatzinakos [70],

where the authors use the wavelet packet decomposition to

get more permanent patterns over time. Still in the context

of the literature works taken into consideration, also some

non-conventional auditory stimuli such as the musical one

can lead toward a relatively stable accuracy in the context

of user authentication systems, as demonstrated in Li et al.

[42]. It should be noted that not all the discussed works

present this characteristic in their experimental results, as

some of them, such as in Yamashita et al. [97] or in El-Fiqi

et al. [25], where the authors postpone to a future work the

study of the EEG pattern stability over time.

4.5 Future research directions

Concerning the future research directions related to the

area we taken into account in this work (i.e., that related to

techniques that combine EEG signals with EP stimuli), the

literature underlines the need to better validate the obtained

results through experimental processes that involve a

greater number of users, considering that many state-of-

the-art works are based on a small number of participants.

Such an improvement during the experimental process,

combined with the ever-increasing performance of

11646 Neural Computing and Applications (2023) 35:11625–11651

123



acquisition devices and analysis techniques, could lead in

the future to reliable and low-cost identification systems

that allow us widespread use of EEG data, both individu-

ally and in combination with other biometric systems.

4.5.1 Emerging ideas

More generally, in the light of the problems previously

discussed in Sect. 4.4, one of the ideas that are increasingly

being taken into consideration is that of realizing hybrid

systems capable of mitigating these issues, for example, by

combining EEG signals with other signals (electrocardio-

gram data, eye-tracking data, etc.) [94].

This means that there is an increasing of multimodal

biometric systems in the literature, which combine differ-

ent techniques and biometric data, and this is not a recent

research direction, as evidenced by the work in Yang and

Ma [99], where the authors define a multimodal identifi-

cation system based on palmprint and iris score level fusion

and wavelet packet transform, or that in Murakami and

Takahashi [50], where instead the authors propose an

identification system based on face recognition, fingerprint,

and iris biometric data.

Another class of approaches that seems to give good

results in this application area is the one that exploits the

functional near-infrared spectroscopy (fNIRS), a technique

that measures the brain signals by measuring modifications

in the properties of light as it shines through the skull and is

refracted back to a particular sensor, or the functional

magnetic resonance imaging (fMRI), a technique that

measures the changes in blood flow that happens during the

brain activity [90].

In light of the above, it is clear that research in this field

will be increasingly multidisciplinary, involving areas such

as neuroscience, engineering, computer science, and many

others [3].

4.5.2 Possible future improvements

Although research in this area shows us an increasingly

widespread use of EEG information in the biometric field

in the future, it also shows the impossibility of directly

using this type of biometric data (EEG signals) to identify

users, differently from what happens with other biometric-

type approaches (face recognition, voice recognition, fin-

gerprint recognition, etc.). This occurs because EEG data

alone fail to provide stable patterns capable of discrimi-

nating users unambiguously over time. For this reason, the

evolution of techniques in the literature shows the

involvement of increasingly sophisticated classification

models but, above all, the combined use of other tech-

niques/strategies (e.g., evoked potentials) and/or additional

biometric information (e.g., heart rate, eye movements,

etc.). What this scenario suggests for the future (at least for

the foreseeable future) is therefore the use of EEG data in

combined systems, where such information is mainly used

to improve user identification performance in systems that

adopt other types of biometric data.

A quite transversal problem that emerges from the lit-

erature, which affects many EEG-based approaches, is that

related to the users’ de-identification since some systems,

such as those aimed at the user identification, should ade-

quately protect the privacy of the involved biometric data

[78].

5 Conclusion and future work

The evidence of the surveyed works related to the last six

years shows the potential feasibility of a biometric

approach based on EEG data under certain external stimuli,

inviting researchers to continue experimenting with new

techniques and strategies aimed at consolidating the studies

carried out so far. In particular, the number of literature

works indicates a growing interest in this type of approach,

year by year: Indeed, the actual number of publications is

much greater, as in this work, we have considered only

those that exploit both EEG signals and EP stimuli and

meet our methodology requirements.

We are convinced that each new work in the literature

offers an interesting contribution to the improvement of

such EEG-based identification systems, and that a future

combination of these contributions can lead toward the

definition of ever more accurate systems. The potential of

such a biometric approach opens up stimulating scenarios

related to the improvement in the security field, with

repercussions also for what concerns a better knowledge of

the mechanisms of EEG response to external stimuli, which

can be profitably used, transversely, in other areas.

Unlike other similar works in the literature, this work

has been focused on a specific research field where the

EEG data are combined with the most widespread stimu-

lation technologies to create biometric user identification

systems able to reduce the issues related to the EEG pat-

terns instability, i.e., it is focused on precise software/

hardware applications. This approach allowed us to eval-

uate the literature of the last six years in a quite exhaustive

way, offering a valuable tool to the research community for

verifying the state of the art, and evaluating the feasibility

of such biometric systems in real-world contexts.

Based on our study, we provide recommendations below

on what we believe to be priority goals for future research

developments.

1. Improving experimentation In Sect. 4.2.2, we have

shown that despite some outstanding results, the
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number of user involved is generally low, from which

we infer that some results may be overly optimistic and

need further experimentation to be confirmed. Accord-

ingly, more in-depth experiments need to be carried

out, especially experiments that involve a more signif-

icant number of users.

2. Enhancing practical usability Although substantial

academic fermentation is at this stage, we have noticed

that some methods require conditions that are difficult

to be applied in a real-world context. Moreover, it is

also challenging to reproduce the experiments

described in some papers for the same reasons.

Accordingly, we recommend considering the practical

applicability in a real-world context when developing

new methods.

3. Combining biometric systems One promising approach

that researchers should explore further is combining

the biometric systems based on EEG data with other

biometric systems to improve the overall performance

or define multilevel user identification systems [56].

4. Experiment with new stimulation approaches Similar

to the effort to use low-cost and easy-to-use hardware

for acquiring EEG data, future research in this field

(EEG ? EP) should consider that the large-scale use of

such systems for biometric user identification goals

cannot be based on dedicated EP hardware devices.

More specifically, it should be able to exploit already

available stimuli generated by a computer until the

market makes available low-cost dedicated devices, as

happened for EEG data acquisition devices. Some

examples of possible stimuli are images, sounds, or

their combination.

As future work, in accordance with what was formalized in

our recent position paper [69], we intend to design and

implement a biometric user identification system based on

low-cost and easy-to-find EEG devices, as well as on

external stimuli techniques that do not require particular

hardware (e.g., based on images and sounds generated by a

computer), focusing our research more on the feasibility of

the approach (i.e., simple operative environment in terms

of hardware and number of electrodes, and reasonable

detection times), rather than only on the mere performance

of the system, searching the right balance between these

two aspects. In this context, concerning the process of

characterization and identification/classification of the

EEG patterns, we would also like to experiment with some

of the approaches/strategies we have adopted with inter-

esting results in other domains, such as the local feature

engineering (LFE) [13] strategy, the discretized extended

feature space (DEFS) [68], and the discretized enriched

data (DED) [67] models.
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