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Abstract

Lenders, such as credit card companies and banks, use credit scores to evaluate

the potential risk posed by lending money to consumers and, therefore, miti-

gating losses due to bad debt. Within the financial technology domain, an ideal

approach should be able to operate proactively, without the need of knowing the

behavior of non-reliable users. Actually, this does not happen because the most

used techniques need to train their models with both reliable and non-reliable

data in order to classify new samples. Such a scenario might be affected by

the cold-start problem in datasets, where there is a scarcity or total absence of

non-reliable examples, which is further worsened by the potential unbalanced

distribution of the data that reduces the classification performances. In this pa-

per, we overcome the aforementioned issues by proposing a proactive approach,

composed of a combined entropy-based method that is trained considering only

reliable cases and the sample under investigation. Experiments done in differ-

ent real-world datasets show competitive performances with several state-of-art

approaches that use the entire dataset of reliable and unreliable cases.
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1. Introduction

The main task of a Credit Scoring system is the evaluation of new loan appli-

cations (from now on named instances) in terms of their potential reliability. Its

goal is to lead the financial operators toward a decision about accepting or not a

new credit, on the basis of a reliability score assigned by the Credit Scoring sys-

tem [1]. In a nutshell, the Credit Scoring system is a statistical approach able to

evaluate the probability that a new instance is considered reliable (non-default)

or unreliable (default), by exploiting a model defined on the basis of previous

instances [2, 3]. Banks and credit card companies use credit scores to determine

who qualifies for a loan, at what interest rate, and at what credit limits. There-

fore, Credit Scoring systems reduce losses due to default cases [4], and, for this

reason, they represent a crucial instrument. Although similar technical issues

are shared, Credit Scoring is different from Fraud detection, which consists of a

set of activities undertaken to prevent money or property from being obtained

through false pretenses.

Thanks to their capability to analyze all the components that contribute to

determine default cases [5], Credit Scoring techniques can also be considered a

powerful instrument for risk assessment and real-time monitoring [6].

Moreover, lenders may also use credit scores to determine which customers

are likely to bring in the most revenue. However, as usually happens with other

similar contexts (e.g., Fraud Detection [7]), the main problem that limits the

effectiveness of Credit Scoring classification techniques is represented by the

unbalanced distribution of data [8]. This happens because the default cases

available for training the evaluation model are fewer than the non-default ones,

hampering the performances of machine learning approaches applied to Credit

Scoring [9]. To note that the unbalanced distribution of data is one of the

problems that enables the cold start problem. As such, approaches for balancing

data mitigate the cold start problem as well.

To overcome such an issue, in this paper we evaluate the instances in terms of

their features entropy, defining a metric able to measure their level of reliability
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considering only non-default cases and the instance under investigation. More

formally, we evaluate the reliability of a new instance in terms of comparing the

Shannon Entropy (from now on referred simply as entropy) measured within a

set of previous non-default instances before and after adding the instance under

investigation. As the entropy measures the uncertainty of a random variable,

a larger entropy in the set including the sample investigated indicates that it

contains similar data in its features, which increases the level of equiprobability,

and then we tend to classify it as reliable. Otherwise, it contains different data

and we consider the instance as unreliable. Such a process allows us operating

proactively, overcoming the issue related to the unbalanced distribution of the

data and, at the same time, mitigating the cold-start problem (i.e., the scarcity

or total absence of default examples).

We report comparisons between our approach and Random Forests, which

are considered state-of-the-art approaches for credit scoring tasks [10, 11, 12].

For that we used two real-world datasets, characterized by different distribution

of data (unbalanced and slightly unbalanced). Experiments results show that,

although our approach is trained on reliable cases only, it has similar perfor-

mances to the Random Forests.

Therefore, the main scientific contributions given by this paper are listed

below:

(i) Calculation of the Local Entropy in the process of credit scoring, a process

aimed to measure the entropy achieved by each feature in the previous

non-default instances, in order to evaluate the entropy variations in terms

of single features of an instance.

(ii) Calculation of the Global Entropy in the process of credit scoring, a meta-

feature obtained by calculating the integral of the area under curve given

by the local entropies, which allows us evaluating the entropy variations

in terms of all features of an instance.

(iii) Definition of the Entropy Difference Approach, an algorithm able to classify
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the new instances as reliable or unreliable by exploiting both the Local

Entropy and Global Entropy information.

This paper is based on a previous work [13], which has been completely re-

vised, rewritten, improved and extended with the following novel contributions:

1. We updated our proposed approach by defining a threshold of differences

in the process of instance classification, aiming at optimizing the perfor-

mance on the basis of the specific operative context, differently from our

previous formalization [13] based on comparing two counters.

2. A feature selection step is now done in our proposed approach, in order to

select instance features based on a twofold criterion (i.e., basic and mutual

entropy). Additionally, experiment comparisons between the performance

achieved by our approach before and after we performed the proposed

feature selection process are reported, to better highlight the benefits of

such a pre-processing step.

3. A complexity analysis is added by evaluating the asymptotic time com-

plexity of the proposed algorithm, in order to determinate its impact in

some particular contexts such as real-time Credit Scoring system, a pro-

cess not done in our previous work [13].

4. One more dataset, which is more suitable for the scenario taken into ac-

count (i.e., the Australian Credit Approval dataset), is added to the ex-

periments, allowing us to better evaluate the performance of our approach

in two different data configurations (highly unbalanced and slightly un-

balanced).

5. We added a new metric of evaluation (i.e., Sensitivity) in the experiments,

which allows us to have a detailed overview of the proposed approach

performance.

6. We added experiments results of the parameter tuning process aimed at
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finding the best threshold of the proposed algorithm, which was not re-

ported in our previous work [13].

7. We added three more baselines based on improved Naive-Bayes classifiers

as competitors.

8. We performed one experiment of varying the number of default (minority

class) samples available to the classifiers, better highlighting the benefits

of the proposed approach in a real world credit scoring scenario.

The remainder of the paper is organized as follows. Section 2 discusses

the background and related works of credit scoring. Section 3 describes the

implementation of the proposed approach. Section 4 provides details on the

experimental environment, the adopted datasets and metrics, as well as on the

implementation of the proposed approach and the competitors. Section 5 shows

the experimental results and, finally, some concluding remarks and future work

are given in Section 6.

2. Related Works

The research related to the Credit Scoring has grown quite significantly in

recent years, in coincidence with the exponential increase of consumer credit [14].

The literature proposes a large number of Credit Scoring techniques [15, 16, 17]

to maximize Equation 1, along with several studies focused on comparing their

performance in several real-world datasets. We discuss some of such solutions

in the remaining of this section.

The work in [18] used the Wavelet transform and three metrics to perform

credit scoring. Similarly, the approach in [19] moved the credit scoring from the

canonical time domain to the frequency one, by comparing differences of mag-

nitudes after Fourier Transform conversion of time-series data. An interesting

approach was proposed in [20], which presents a comparison of non-square ma-

trix determinants identify the reliability of users data to allow money loan. The
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work in [21] used a score based on outlier parameters for each transaction, to-

gether with an isolation forest classifier to detect unreliable users. Kolmogorov-

Smirnov statistics were used in [22] to cluster unreliable and reliable users. Au-

thors of [23] used data preprocessing and a Random Forest optimized through

a grid search step. A three-way decisions approach with probabilistic rough

sets is proposed in [24]. In [25], a deep learning Convolutional Neural Network

approach is used for the first time for credit scoring, which is applied to features

that are pre-processed with the Relief feature selection technique and converted

into grayscale images. An application of kernel-free fuzzy quadratic surface

Support Vector Machines is proposed in [26], and an interesting comparison

of different neural networks, such as Multilayer Perceptrons and Convolutional

Neural Networks for Credit Scoring is done in [27]. An extensive work in this

sense was done in [10], where a large scale benchmark of forty-one methods for

the instance classification has been performed on eight Credit Scoring datasets.

Another type of problem, related to the optimization of the parameters involved

in these approaches was instead tackled in [28], which also reports a discussion

about the canonical metrics used to measure the performance [29].

Machine learning techniques can also be combined in order to build hybrid

approaches of Credit Scoring as, for instance, those presented in [30, 31], which

exploit a two-stage hybrid model with artificial neural networks and a multivari-

ate adaptive regression splines model, or that described in [32], which instead

exploits neural networks with k-mean clustering method. Another kind of clas-

sifiers combination, commonly known as ensembles, has also been extensively

studied in the literature. The work in [33] used several classifiers, including

SVMs and logistic regression, in order to validate a feature selection approach,

called group penalty function, which penalizes the use of variables from the same

source of information in the final features. In [34], a multi-step data process-

ing operation that includes normalization and dimensionality reduction, allied

with an ensemble of five classifiers optimized by a Bayesian algorithm, are used

in the pipeline. The work in [35] ensembles five classifiers (logistic regression,

support vector machine, neural network, gradient boosting decision tree and
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random forest) using a genetic algorithm and fuzzy assignment. In [36], a set of

classifiers are joined in an ensemble according to their soft probabilities. In [37],

an ensemble is used with a feature selection step based on feature clustering,

and the final result is a weighted voting approach.

Other works are closely related and can be integrated to Credit Scoring

application. For example, in user profiling, users can be considered good and

bad borrowers, not only according to core credit information, but also their

behavior in social networks. In this sense, the work in [38] used a Naive-Bayes

based classifier in both features: hard (credit information) and soft (friendship

and group information). Linguistic-based features are coupled with machine

learning classifiers in [39] to detect a person’s behavior. Finally, the work in

[40] used deep learning through Long Short Term Memory networks on texts to

define the personality of a person.

Notwithstanding, several issues and limitations are still considered open

problems in Credit Scoring tasks. We discuss all of them in the following:

1. Data Scarcity Problem: this issue refers to the lack of data to validate

machine learning models [41]. This happens mainly due to the policies

and constraints adopted by researchers working in this field, which do

not allow them releasing information about their business activities for

privacy, competition, or legal issues.

2. Non-adaptability Problem this problem concerns the inability of the

Credit Scoring models to correctly classify the new instances, especially

when their features generate different patterns w.r.t the patterns used

to define the evaluation model. All the Credit Scoring approaches are

affected by this problem that leads toward misclassification, due to their

inability to identify new patterns in the instances under analysis.

3. Data Heterogeneity Problem: the pattern recognition process used to

detect some specific patterns on the basis of a model previously defined

represents a very important branch of the machine learning, since it can
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be used to solve a large number of real-world problems [42]. However, it

should be noted how the effectiveness of these processes can be reduced

by the heterogeneity of the involved data. Such a problem, also known

in literature as instance identification or naming problem, is due to the

fact that same data are often represented in a different way in different

datasets [43].

4. Cold-start Problem: such an issue arises when the set of data used

to train an evaluation model does not contain enough information about

the domain taken into account, making it impossible to define a reliable

model [44, 45, 46]. In other words, this happens when the training data are

not representative of all the involved classes of information [47, 48], which

in the application discussed herein are represented by the default and non-

default cases. More formally, within the credit scoring domain, the cold

start problem consists of the following three cases: (i) New community.

When a catalogue of financial indicators exist but almost no users are

present and the lack of user interaction makes it very hard to provide

reliable suggestions. (ii) New financial feature. A new financial feature

is added to the system but there are no interactions (financial features

applicable to a given user) present. (iii) New user. A new user registers

but he/she has not provided any interaction yet, therefore it is not possible

to provide personalized analysis.

5. Data Unbalance Problem: without underestimating the other prob-

lems, we can state that the main complicating factor in a Credit Scoring

process is the imbalanced class distribution of data [49, 9], caused by the

fact that the default cases are much smaller than the non-default ones.

This means that the information available to train an evaluation model is

typically composed of a large number of legitimate cases and a small num-

ber of fraudulent ones, a data configuration that reduces the effectiveness

of the most common classification approaches [9, 11]. A common solution

adopted in order to face this problem is the artificial balance of data [50].
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It consists of an over-sampling or under-sampling operation. In the first

case the balance is obtained by duplicating some of the instances that

occur the least (usually, the default ones), while in the second case it is

obtained by removing some of the instances that occur the most (usually,

the non-default ones). An analysis of the advantages and disadvantages

related to this preprocessing phase has been presented in [51, 52].

Some works have focused on the problem of imbalanced learning in datasets.

In [53], the authors presented a technique that clones the minority class instances

according to the similarity between them and the minority class mode. The work

in [54] proposed cost-sensitive Bayesian network classifiers, which incorporate

an instance weighting method giving different classification errors to different

classes. Authors in [55] proposed undersampling and oversampling approaches

based on a novel class imbalance metric, which splits the imbalance problem

into multiple balanced subproblems. Then, weak classifiers trained in a bagging

manner are used in a boosting fashion. The approach proposed in [56] capture

the covariance structure of the minority class in order to generate synthetic sam-

ples with Mahalanobis Distance-based Over-sampling and Generalized Singular

Value Decomposition. The research performed in [57] studied potential bias

characteristics of imbalanced crowdsourcing labeled datasets. Then, the au-

thors proposed a novel consensus algorithm based on weighted majority voting

of four classifiers. Such algorithm uses the frequency of minority class to obtain

a bias rate, assigning weights to the majority and minority classes. The authors

of [58] enhanced a multi-class classifier based on fuzzy rough sets. Firstly, they

proposr an adaptive weight setting for the binary classifiers involved, addressing

the varying characteristics of sub-problems. Then, a new dynamic aggregation

method combines the predictions of binary classifiers with a global class affinity

method before making a final decision. Finally, authors in [59] evolved one-

vs-one schemes for multi-class imbalance classification problems, by applying

binary ensemble learning approaches with an aggregation approach.

However, differently from all of these previous approaches, our method
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doesn’t need any samples from the minority class in the proposed pipeline, a

problem that can happen specially when the cold-start problem arises (i.e., there

is no default cases in the dataset). Our approach faces these problems by train-

ing its evaluation model using only one class of data (the non-default cases, or

the majority class), comparing entropy-based metrics behavior of non-evaluated

samples before and after they are added to a set of previous non-default sam-

ples. Therefore, our proposed approach represents a side effect of adopting a

proactive methodology by being aware of limitations of the environment. We

discuss further details of our proposed approach in the next section.

3. Proposed Approach

Before we discuss our solution for the credit score in more details, let us

define the problem of Credit Scoring more formally. Given a set of classified

instances T = {t1, t2, . . . , tK} and a set of features F = {f1, f2, . . . , fM} that

compose each t ∈ T , we denote as T+ = {t1, t2, . . . , tN} the subset of non-

default instances (then T+ ⊆ T ), and as T− = {t1, t2, . . . , tJ} the subset of

default ones (then T− ⊆ T ). We also denote as T̂ = {t̂1, t̂2, . . . , t̂U} a set

of unclassified instances and as E = {e1, e2, . . . , eU} these instances after the

classification process (thus |T̂ | = |E|). It should be observed that an instance

can only belong to one class c ∈ C, where C = {reliable, unreliable}. So,

the Credit Score system problem is to define a function eval(t̂u) which returns

the maximum sum of a binary value σ, used to assess the correctness of t̂u

classification (i.e., 0=misclassification, 1=correct classification), or

max
0≤σ≤|T̂ |

σ =

|T̂ |∑
u=1

eval(t̂u). (1)

Given such concepts, the implementation of our approach has been carried

out through the following four steps:

1. Feature Selection Process: evaluation of each instance feature in or-

der to evaluate its contribution in the context of the definition of our

evaluation model.
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2. Local Entropy Calculation: calculation of the local entropy Λ, which

gives information about the level of entropy assumed by each single feature

in the set T+.

3. Global Entropy Calculation: calculation of the global entropy γ, a

meta-information defined by calculating the integral of the area under the

Λ curve.

4. Entropy Difference Approach: definition of the Entropy Difference

Approach (EDA) able to classify the new instances on the basis of the Λ

and γ information.

A pipeline of the proposed EDA approach is shown in Figure 1. In the

first step, the set of previous non-default instances T+ and the set of instances

to be evaluated T̂ are preprocessed, performing a feature selection task aimed

to exclude from the evaluation process the features with a low level of char-

acterization of the instances. This step reduces the computational complexity

and returns sets with reduced features T ′+ and T̂ ′. In the next steps, the local

entropy is calculated for each feature of the set T ′+, as well as the global en-

tropy of all the features in T ′+. The last step performs the comparison between

the local and global entropy previously calculated for the set T ′+, and the same

information calculated for adding each element of the set T̂ ′ to T ′+, classifying

the non evaluated instances on the basis of the threshold Θ. The result of the

entire process is then stored in the set E.

Algorithm 1 describes the general idea of the approach and is composed of

two steps. It receives as input the set T+ of reliable instances, the set T̂ of non-

evaluated instances and three thresholds: min1, and min2 from the feature

selection approach, and Θ from the proposed EDA approach. The first step

calculates the reduced features using basic and mutual Shanon entropies metrics

to eliminate features according to thresholds min1 and min2 (a process further

discussed in Section 3.1). The transformed sets T ′+ of reliable instances and T̂ ′

of non-evaluated instances are then the input of the proposed EDA approach
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Figure 1: EDA High-level Architecture

(Section 3.4), which classifies each t̂′ ∈ T̂ ′ by the threshold θ on comparisons of

Local Maximum Entropy (Section 3.2) and global Maximum Entropy (Section

3.3) values calculated before and after adding non evaluated instances t̂′ ∈ T̂ ′

to T̂ ′+. Then, the set E will return the classification of each non evaluated

sample t̂′ ∈ T̂ ′. In the following subsections, we will describe in details all the

aforementioned steps.

Algorithm 1 Proactive Credit Scoring Approach

Input: T+=Set of non-default instances; T̂=Set of instances to evaluate; min1,min2=Basic and

mutual entropy thresholds; Θ=EDA Threshold

Output: E=Set of classified instances

1: procedure Proactive Credit scoring(T+, T̂ , min1,min2, Θ)

2: T ′+, T̂ ′ ← FeatureSelection(T+, T̂ ,min1,min2) . See Section 3.1

3: E ← InstancesEvaluation(T ′+, T̂
′,Θ) . See Sections 3.2, 3.3 and 3.4.

4: return E

5: end procedure
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3.1. Feature Selection

Many studies [60] have discussed how the performance of a Credit Scoring

model is strongly influenced by the features used during the process of their

definition. This process is known as Feature Selection and it can be performed

by using different techniques, on the basis of the characteristics of the context

taken into account. It means that the choice of the best features to use during

the model definition is not based on a unique criterion, but rather it exploits

several criteria with the aim to evaluate, as best as possible, the influence of

each feature in the process of defining the Credit Scoring model. This represents

an important preprocessing step, since it can reduce the complexity of the final

model, decreasing the training times and increasing the generalization of the

model at the same time. Further, it can also reduce the problem related to the

overfitting, a problem that occurs when a statistical model describes random

error or noise instead of the underlying relationship, and this frequently happens

during the definition of excessively complex models, since many parameters,

with respect to the number of training data, are involved.

In the proposed approach, the feature selection is performed by exploiting a

dual entropy-based approach that evaluates the importance of the features both

individually and mutually. For that, we use two metrics, defined as follows.

Basic Shannon Entropy. It measures the uncertainty associated with a ran-

dom variable by evaluating the average minimum number of bits needed to

encode a string of symbols based on their frequency. High values of entropy in-

dicate a high level of uncertainty in the data prediction process and, otherwise,

low values of entropy indicate a lower degree of uncertainty in this process. More

formally, given a set of values f ∈ F , the entropy H(F ) is defined as shown in

the Equation 2, where P (f) is the probability that the element f is present in

the set F .

H(F ) = −
∑
f∈F P (f)log2[P (f)] (2)
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Mutual Shannon Entropy. It measures the amount of information a ran-

dom variable gives about another one. High mutual information values indicate

a large reduction in uncertainty, while low mutual information values indicate a

small reduction of uncertainty. A value of zero indicates that the variables are

independent. More formally, given two discrete variables X and Y whose joint

probability distribution is PXY (x, y), denoting as µ(X;Y ) the mutual informa-

tion between X and Y , the Mutual Shannon Entropy is calculated as shown in

Equation 3 below

µ(X;Y ) =
∑
x,y PXY (x, y) log PXY (x,y)

PX(x)PY (y) = EPXY
log PXY

PXPY
. (3)

With these two metrics in mind, we perform the feature selection through

the following steps:

1. The basic entropy of each single feature is measured, evaluating its con-

tribution in the instance characterization.

2. The mutual entropy of each feature with respect to the other features is

evaluated.

3. Results of the previous two steps are combined, selecting the features to

be used within the model definition process.

Such an approach allows us evaluating the contribution of each feature from

a dual point of view, by deciding when we can exclude it in order to reduce

the computational complexity, an important preprocessing task in case of large

datasets.

The feature selection process is detailed in Algorithm 2. It takes as input a

set T+ of previous non-default instances, the set T̂ of instances to evaluate and

min1 and min2 values, which represent the thresholds used to determine when

an entropy value must be considered relevant (as previously described). The

algorithm returns then two sets of instances, T ′+ and T̂ ′, which contain only the

features that had not been removed by the algorithm, in order to use them in

the model definition process. In step 2 of the algorithm, we extract the features
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related to the dataset T+, processing them in the steps 4-10. Such a process

calculates the basic and mutual entropy (steps 5 and 6) in the set of values

assumed by each feature in the dataset T+, removing (steps 8 and 9) from T+

and T̂ the features in T+ that present a basic entropy above the min1 value and

a mutual entropy below the min2 value (step 7). At step 12, the sets T ′+ and

T̂ ′ with reduced features are returned by the algorithm.

Algorithm 2 Feature Selection

Input: T+=Set of non-default instances; T̂=Set of instances to evaluate; min1,min2=Basic and

mutual entropy thresholds

Output: T ′+=Set of non-default instances with selected features; T̂ ′=Set of instances to evaluate

with selected features

1: procedure FeatureSelection(T+, T̂ , min1,min2)

2: F+ ← getAllFeatures(T+)

3: F̂ ← getAllFeatures(T̂ )

4: for each f in F+ do

5: be ← getBasicEntropy(F+, f)

6: me ← getMutualEntropy(F+, f)

7: if be > min1 AND me < min2 then

8: T ′+ ← removeFeature(f, F+)

9: T̂ ′ ← removeFeature(f, F̂ )

10: end if

11: end for

12: return T ′+, T̂ ′

13: end procedure

3.2. Local Maximum Entropy Calculation

Denoting as H(f ′) the entropy measured in the values assumed by a feature

f ′ ∈ F ′ in the set T ′+, we define the set Λ as the entropy achieved by each

f ′ ∈ F ′, so we have that |Λ| = |F ′|. Such calculation is performed as shown in

Equation 4.

Λ = {λ1 = max(H(f ′1)), λ2 = max(H(f ′2)), . . . , λM = max(H(f ′M ))} (4)

In our proposed Entropy Difference Approach, such a metric is calculated

twice, before and after we added to T ′+ a non evaluated instance t̂′ ∈ T̂ ′.
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3.3. Global Maximum Entropy Calculation

We denote as global maximum entropy γ the integral of the area under curve

of the local Entropy Λ (previously defined in Section 3.2), as shown in Figure 2.

f1 f2
. . .

fM

λ1

λ2

.

.

.

λM

γ

Features (F )

E
n
tr
o
p
y

(Λ
)

Figure 2: Global Entropy γ

More formally, the value of γ is calculated by using the trapezium rule, as

shown in Equation 5.

γ =

∫
λM

λ1

f(x) dx ≈ ∆x
2

|Λ|∑
n=1

(f(xn+1) + f(xn))

with

∆x = (λM−λ1)
|Λ|

(5)

The global entropy is a meta-feature that gives us information about the

entropy achieved by all the features in T ′+, before and after we added to it a

non evaluated instance. We use this information during the evaluation process,

jointly with that given by Λ in Equation 4.

3.4. Entropy Difference Approach

Our proposed Entropy Difference Approach (EDA) is based on the Algo-

rithm 3, which is able to evaluate and classify as reliable or unreliable a set of

non evaluated (new) instances. It takes as input a set T ′+ of known non-default
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instances with features reduced, a set T̂ ′ of non evaluated instances with the

same features reduced and a previously trained threshold Θ. Then, it returns

as output a set E, containing all the instances in T̂ ′ classified as reliable or

unreliable, depending on the Λ and γ information.

In step 3 of the algorithm, we calculate the Λa value, by using the reduced

features from non-default instances only in T ′+, as described in Section 3.2,

while in step 4 we obtain the global entropy γ (Section 3.3) in the same set.

The steps from 5 to 23 process all the instances t̂′ ∈ T̂ ′ from the instances to

be classified with reduced features. After the calculation of Λb and γb values

(steps 7 and 8) by adding the current instance t̂′ to the set T ′+ of non-default

instances with reduced features, the steps from 9 to 12 compare each λa ∈ Λa

with the corresponding feature λb ∈ Λb, counting how many times the value

of λb is less or equal than λa. This is stored in a counter variable count (step

11). Steps 14-16 perform the same operation, but now it takes into account the

global entropy γ comparisons. At the end of the previous sub-processes, in the

steps from 17 to 21 we classify the current instance as reliable or unreliable, on

the basis of the count value and the Θ threshold, then we set count to zero (step

22). The resulting set E is returned at the end of the entire process at step 24.

In this paper, we also include an evaluation of the computational complex-

ity taken for the classification of a single instance t̂′, because this information

allows us determining the performance of our Algorithm 3 in a context of a

real-time Credit Scoring system [61], a scenario where the response-time repre-

sents a primary aspect. We perform this operation by analyzing the theoretical

complexity of the classification Algorithm 3, previously formalized. So, let N

be the size of the set T ′+ (i.e., N = |T ′+|) and M the size of the set F ′+ (i.e.,

M = |F ′+|). The asymptotic time complexity of a single evaluation, in terms of

Big O notation, can be determined on the basis of the following observations:

(i) as shown in Figure 3, the Algorithm 3 presents two nested loops given by

the outer loop that starts at step 4 (L1 loop), which executes N times

the inner loop L2 that starts at step 7 and other operations (i.e., getLo-
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Algorithm 3 Entropy DifferenceApproach (EDA)

Input: T ′+=Non-default instances with features reduced (see Section 3.1); T̂ ′=Instances to eval-

uate with reduced features (see Section 3.1); Θ=Threshold

Output: E=Set of classified instances

1: procedure InstancesEvaluation(T ′+,T̂ ′, Θ)

2: F ′+ ← getAllFeatures(T ′+)

3: Λa ← getLocalMaxEntropy(F ′+)

4: γa ← getGlobalMaxEntropy(Λa)

5: for each t̂′ in T̂ ′ do

6: f̂ ′ ← getAllFeatures(t̂′)

7: Λb ← getLocalMaxEntropy(F ′+ + f̂ ′)

8: γb ← getGlobalMaxEntropy(Λb)

9: for each λ in Λ do

10: if λb ≤ λa then

11: count← count+ 1

12: end if

13: end for

14: if γb ≤ γa then

15: count← count+ 1

16: end if

17: if count > Θ then

18: E ← (t̂,reliable)

19: else

20: E ← (t̂,unreliable)

21: end if

22: count← 0;

23: end for

24: return E

25: end procedure
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calMaxEntropy, getGlobalMaxEntropy, plus comparisons and assignations

operations, respectively with complexity O(N), O(M), O(1), and O(1));

(ii) the inner loop L2 executes M times operations of comparisons and assig-

nations, respectively with complexity O(1) and (1); and

(iii) the complexity related to the other operations executed by the algorithm

(i.e., getLocalMaxEntropy, getGlobalMaxEntropy in steps 2 and 3) is, re-

spectively, O(N) and O(M).

The aforementioned considerations allow us determining that the asymp-

totic time complexity of the proposed algorithm is O(N ×M), a complexity

that can be effectively reduced by running in parallel the process over several

machines, e.g., by exploiting large scale distributed computing models such as

MapReduce [62].

Basic Entropy

(evaluation)

L2

Global Entropy

(evaluation)

L1

Figure 3: Algorithm Nested Loops

4. Experimental Setup

This section describes the datasets and metrics considered in the experiment,

the adopted experiments methodology and implementation details of the state-

of-the-art approach considered and the proposed approach.

19



4.1. Datasets

The datasets used during the experiments have been chosen for two reasons:

first, they represent two benchmarks in this research field; second, they represent

two different distributions of data (i.e., unbalanced and slightly unbalanced).

The first one is the German Credit (GC) dataset (unbalanced data distribution)

and the second one is the Australian Credit Approval (ACA) dataset (slightly

unbalanced data distribution). Both the datasets are freely available at the UCI

Repository of Machine Learning Databases1. These datasets are released with

all the attributes modified to protect the confidentiality of the data, and we

used a version suitable for the algorithms that can not operate with categorical

variables (i.e., a version with all numeric attributes). It should be noted that,

in case of other datasets that contain categorical variables, their conversion to

numeric form is straightforward.

Table 1: Datasets Overview

Dataset Total cases Non-default Default Attributes Classes

name |T | |T+| |T−| |F | |C|

GC 1, 000 700 300 21 2

ACA 690 307 383 15 2

The datasets' characteristics are summarized in Table 1 and detailed in the

following:

German Credit (GC). It contains 1,000 instances: 700 of them are non-

default instances (70.00%) and 300 are default instances (30.00%). Each in-

stance is composed of 20 features, whose type is described in Table 2 and a

binary class variable (reliable or unreliable).

1ftp://ftp.ics.uci.edu/pub/machine-learning-databases/statlog/
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Australian Credit Approval (ACA). It contains 690 instances, 307 of them

are non-default instances (44.5%) and 383 are default instances (55.5%). Each

instance is composed of 14 features and a binary class variable (reliable or

unreliable). In order to protect the data confidentiality, all feature names and

values of this dataset have been changed to meaningless symbols, as shown in

Table 3, which reports the feature type instead of its description.

Table 2: Dataset GC Features

Feature Description Feature Description

1 Status of checking account 11 Present residence since

2 Duration 12 Property

3 Credit history 13 Age

4 Purpose 14 Other installment plans

5 Credit amount 15 Housing

6 Savings account/bonds 16 Existing credits

7 Present employment since 17 Job

8 Installment rate 18 Maintained people

9 Personal status and sex 19 Telephone

10 Other debtors/guarantors 20 Foreign worker
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Table 3: Dataset ACA Features

Feature Type Feature Type

1 Categorical field 8 Categorical field

2 Continuous field 9 Categorical field

3 Continuous field 10 Continuous field

4 Categorical field 11 Categorical field

5 Categorical field 12 Categorical field

6 Categorical field 13 Continuous field

7 Continuous field 14 Continuous field
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4.2. Metrics

This section introduces the metrics used to compare our proposed approach

with the competitor in the experiments.

Accuracy. This metric reports the number of instances correctly classified and

is calculated as:

Accuracy(T̂ ) =
|T̂ (+)|
|T̂ |

, (6)

where |T̂ | corresponds to the total number of instances, and |T̂ (+)| to the number

of instances correctly classified.

Sensitivity. This metric measures the number of instances correctly classified

as reliable, providing an important information since it allows evaluating the

predictive power of our approach in terms of capability to identify the default

cases. It is calculated as

Sensitivity(T̂ ) =
|T̂ (TP )|

|T̂ (TP )|+ |T̂ (FN)|
, (7)

where |T̂ (TP )| corresponds to the number of instances correctly classified as

reliable and |T̂ (FN)| to the number of reliable instances erroneously classified as

unreliable.

F-score. The F-score represents the weighted average of the Precision and Re-

call metrics and is considered an effective performance measure for unbalanced

datasets [63]. Such a metric is calculated as

F -score(T (P ), T (R)) = 2 · Precision ·Recall
Precision+Recal

with

Precision(T (P ), T (R)) =
|T (R) ∩ T (P )|
|T (P )|

Recall(T (P ), T (R)) =
|T (R) ∩ T (P )|
|T (R)|

,

(8)

where T (P ) denotes the set of performed classifications of instances, and T (R)

the set that contains the actual classifications of them.

23



Area Under the Receiver Operating Characteristic (AUC). This metric

is a performance measure used to evaluate the effectiveness of a classification

model [64, 65]. It is calculated as

Θ(t+, t−) =


1, if t+ > t−

0.5, if t+ = t−

0, if t+ < t−

AUC = 1
|T+|·|T−|

|T+|∑
1

|T−|∑
1

Θ(t+, t−), (9)

where T+ is the set of non-default instances, T− is the subset default instances,

and Θ indicates all possible comparisons between the instances of the two subsets

T+ and T−. The final result is obtained by averaging all the comparisons.

4.3. Methodology, Competitors and Proposed Approach Implementation Details

The experiments have been performed using the k-fold cross-validation, with

k=10. This approach allows us reducing the impact of data dependency, im-

proving the reliability of the results. For this setup, we choose the Random

Forest classifier [66] and three Naive Bayes improved classifiers [67, 68, 69] as

competitors.

The Random Forests [66] approach represents one of the most common and

powerful state-of-the-art techniques used for the Credit Scoring tasks, since in

most of the cases it outperforms the other ones [10, 11, 12]. It consists of an

ensemble learning approach for classification and regression based on the con-

struction of a number of randomized decision trees during the training phase.

The conclusion is inferred by averaging the obtained results and this technique

can be used to solve a wide range of prediction problems. Naive Bayes classifiers

use the Bayes Theorem by predicting probabilities that the input data belongs

to a particular class. Thus, the class with the highest probability is considered

the most likely class. We also included in the experiments this kind of classifier

as competitor as it was also used for a similar problem before [38]. Therefore,

we choose to also compare the proposed approach with some improved naive

Bayes algorithms: Hidden Naive Bayes [67] (we will refer to this competitor
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as HNB), Deep Feature Weighted Naive Bayes [68] (we will refer to this com-

petitor as DFWNB) and Correlation-based Feature Weighted Naive Bayes [69]

(we will refer to this competitor as CFWNB). The implementation used to

evaluate all the baselines performances in our experiments was the one made in

the Waikato Environment for Knowledge Analysis (WEKA) machine learning

package2. Parameters of these classifiers are shown in Table 4.

Table 4: Competitor Algorithms Parameters

Algorithm Parameter Values Description

RF bagSizePercent 100 Size of each bag as a percentage of the training set size

batchSize 100 The preferred number of instances to process if batch prediction is being performed

maxDepth Unlimited The maximum depth of the tree

numIterations 100 The number of iterations to be performed

numDecimalP laces 2 The number of decimal places to be used for the output of numbers in the model

seed 1 The random number seed to be used

HNB batchSize 100 The preferred number of instances to process if batch prediction is being performed

numDecimalP laces 2 The number of decimal places to be used for the output of numbers in the model

DFWNB bagSizePercent 50 Size of each bag as a percentage of the training set size

batchSize 100 The preferred number of instances to process if batch prediction is being performed

classifier DFWNB The base classifier to be used

ignoreBelowDepth 0 Set to zero weight the attributes below this depth in the trees (0=disable)

numBaggingIterations 10 Number of bagging iterations

useCFSBasedWeighting True Use CFS-Based Feature Weighting

useGainRatioBasedWeighting False Use Gain-Ratio-Based Weighting

useInfoGainBasedWeighting False Use Info-Gain-Based Weighting

useCFSBasedWeighting True Use CFS-Based Weighting

useLogDepthWeighting False Use Log-Depth Weighting

usePrunedTrees False Use Pruned Trees for bagging

useReliefBasedWeighting False Use Relief-Based Weighting

useZeroOneWeights False Use Zero-One Weights

numDecimalP laces 2 The number of decimal places to be used for the output of numbers in the model

seed 1 The random number seed to be used

CFWNB batchSize 100 The preferred number of instances to process if batch prediction is being performed

numDecimalP laces 2 The number of decimal places to be used for the output of numbers in the model

2https://www.cs.waikato.ac.nz/ml/
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The proposed approach was developed in Java. The entropy measures needed

for the approach presented in this paper have been developed by using JavaMI 3,

a Java port of MIToolbox 4.

5. Experiments

In this section, we start the discussion about the experimental results. We

divide this section into two subsections: in the first subsection, we present the

experiments done to find the parameters of the proposed approach. Then, we

discuss the final experiments results, comparing the proposed approach against

its version without feature selection and also the competitors in real-world credit

scoring datasets.

5.1. Parameter Tuning Experiments

In this Subsection, we discuss experiments results that helped us to find the

best parameters of the proposed approach. In Section 5.1.1, we show how we

found the features to be removed in our proposed approach using the feature

selection step. Then, in Section 5.1.2, we report the experiments done that

helped us to find the EDA threshold of our proposed approach.

5.1.1. Feature Selection

In our first experiment to find parameters, we perform a study aimed at

evaluating the contribution of each instance features in the proposed approach

for the classification process. We do this by exploiting two different approaches

of evaluation based on concepts of entropy previously discussed in Section 3.1.

Results of each feature’s basic and mutual entropies are shown in Figure 4.

The results shown in Figure 4 indicate that, although several features present

a high level of entropy (i.e., a low level of instance characterization, since the

entropy increases as the data becomes equally probable), they have a positive

3http://www.cs.man.ac.uk/~pococka4/JavaMI.html
4http://www.cs.man.ac.uk/~pococka4/MIToolbox.html
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Figure 4: Basic and Mutual Entropy
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contribution in a mutual relation with other features (the number of mutual

relations are represented through the horizontal lines in the feature bars). Con-

sidering that all values of entropy have been normalized in the [0, 1] range (y-

axis) and high values of Basic Entropy indicate high levels of uncertainty while

high values of Mutual Entropy indicate large reductions of uncertainty, we can

do the following considerations:

(i) The Basic Entropy results, reported in Figure 4.a and Figure 4.c, show

that there are many features in the GC dataset that present a high level

of Basic Entropy (i.e., we considered as relevant value of Basic Entropy a

value above the two thirds of the interval, e.g., the features 1, 3, 6, 7, 8,

11, and 19 in GC dataset, as well as features 2, 10, and 12 in the ACA

dataset).

(ii) The Mutual Entropy results, reported in Figure 4.b and Figure 4.d, show

if there are features with a high level of Basic Entropy for which a Mutual

Entropy with other features that reduces their uncertainty exists (we con-

sidered as relevant value of Mutual Entropy a value above the one quarter

of the interval). In our case, there are not features that present such a sta-

tus, since the features with a relevant value of Mutual Entropy are only the

features 12 and 15 of the GC dataset, and there are no relevant features

in the ACA dataset.

(iii) Such a scenario leads us towards the decision to exclude from the model

definition process all the features with a high level of Basic Entropy, i.e.,

the features 1, 3, 6, 7, 8, 11, and 19 of the GC dataset, and the feature

2, 10, and 12 of the ACA dataset. It should be noted that the high level

of uncertainty reported by the Basic Entropy can be determined by two

factors: either the information gathered by the system are inadequate or

the nature of information has a low relevance for the classification task.

Furthermore, it should be observed how the aforementioned process reduces

the computational complexity, since after the feature selection we excluded from
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the model definition process 7, 000 elements (feature values involved in the evalu-

ation process), i.e., 35.00% of the total elements from the GC dataset and 2, 070

elements (21, 00% of the total elements) from the ACA dataset, as reported in

Table 5.

Table 5: Feature Selection Process

Dataset Dataset Removed Processed Reduction

name total features total features total features percentage

GC 20, 000 7, 000 13, 000 35.00

ACA 9, 660 2, 070 7, 590 21.00

5.1.2. Finding the Optimal EDA Threshold

According to the formalization of our approach made by the Algorithm 3,

we need to define an optimal threshold Θ, that can be considered a function

of the hyper-plane that will classify the samples T̂ ′ into reliable or unreliable.

Such an operation was performed by testing all the possible values, as shown

in Figure 5. The tests were stopped as soon as the measured accuracy did not

improve further and the obtained results showed that the optimal threshold Θ

(i.e., that related to the maximum value of Accuracy) was 3 for the GC dataset

(Accuracy 70.30%) and 5 for the ACA dataset (Accuracy 67.20%).

5.2. Results

The experimental results are divided into three parts: (i) studying the effect

of feature selection in the proposed approach; (ii) performance evaluation in

public datasets; and (iii) performance under different levels of class unbalancing.

We discuss these experiments in details in the following subsections.

5.2.1. The Effect of Feature Selection

We first report the experiment results of comparing the proposed approach

with and without feature selection, a dataset preprocessing step of our approach

discussed in Section 3.1. Figure 6 shows that removing features detected through
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Figure 5: Entropy Difference Approach Tuning

the process performed in Section 5.1.1 presents a twofold advantage. First, it

reduces the computational complexity, since fewer elements are involved in the

evaluation process (as reported in Table 5). Second, it improves the perfor-

mance in terms of all the metrics taken into account. From Figure 6, it may be

highlighted the big jump in Sensitivity for both datasets (0.88 to 0.92 in GC

dataset, and 0.70 to 0.86 in ACA dataset), showing that the proposed approach

eliminates noise in the samples of the default class, increasing their classification.

5.2.2. Real-World Credit Scoring

We show the results considering different metrics that compare our proposed

approach against the competitors in Figures 7 and 8. These figures show that

our approach has promising results if compared with other baselines, even with-

out any knowledge about default cases in its training step. The leftmost part

of Figure 7 shows that our approach showed the best accuracy result for the

most unbalanced dataset (GC), but not the best one for the slightly unbalanced

dataset (ACA). However, in the rightmost part of Figure 7, it is shown that the

proposed approach had the best default detection (sensitivity) for both datasets,

with an almost perfect detection of GC default cases. The performance differ-
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Figure 6: Proposed EDA approach metrics before and after the feature selection process.

ences in different datasets happens because of the complexities of samples in the

ACA dataset, that are composed of different features from the ones in the GC

dataset. The best baseline, namely a deep naive Bayes classifier [68] (DFWNB),

succeeded only for the most balanced dataset (ACA), highlighting the fact that

it performs an efficient credit scoring only when it has sufficient samples of both

classes for training.

Figure 8 shows in its leftmost part that the f-score of our approach for the

GC dataset is the best. The AUC of the proposed approach (rightmost part of

Figure 8) is also the best for the GC dataset. All the other baselines (RF, HNB,

DFWNB, CFWNB) had poor performances in this scenario, even considering

the more balanced dataset (ACA). A special case that we would like to mention

is about the low performance of the RF classifier, which is an ensemble of

decision trees that is expected to work better in this real-world scenario. Such

findings allow us to conclude that, at most, the baselines can have competitive

performances against our approach only when balanced classes are available for

training. We further show in the next subsection how our approach works better

when less default cases in the training data are available.
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Figure 8: F -score and AUC Performance

5.2.3. Performance with Different Levels of Unbalance

In addition to the experiments discussed before, we tested our approach

and competitors in the GC dataset (the most unbalanced one) with different

unbalance levels. Therefore, we reduced the 300 original unreliable cases that

compose the GC dataset according to five different levels of unbalance. In more

detail, we used 50, 100, 150, 200, and 300 (original dataset) unreliable cases,

joining them with the 700 reliable cases already present in the GC dataset. This

creates new datasets with 750, 800, 850, 900 and 1000 (original dataset) samples,
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respectively. Therefore, the unreliable cases now correspond, respectively, to

6.66%, 12.50%, 17.64%, 22.22% and 30.00% of reliable cases in these datasets.

For the experiments, we split the resulting datasets in training and test sets

according to the 10-fold cross validation criterion, with our approach being the

only one that does not consider default cases for training. Figure 9 shows the

results of such experiments.

The results showed in Figure 9 highlight the proactive nature of our ap-

proach. By not considering the default cases in the training set, the imbalanced

nature of such a problem does not influence our training. All the other ap-

proaches are influenced by the fact that less default training data is present,

so they were able to reach accuracy comparable or better than ours only when

more allowed default training data were available, as can be seen in the first row

of Figure 9 (from 17.64% to 30%). However, the sensitivities of these approaches

are still low as the training data is still unbalanced for the default cases, while

our approach keep an almost perfect sensitivity in all unbalanced scenarios, as

can be seen in the second row of Figure 9. The F-score metric of our approach,

which is a recommendable measure for unbalanced environments, also highlights

the proactive feature of our approach as it defeats all the baselines in all unbal-

anced scenarios, as can be seen in the third row of Figure 9. Finally, the fact

that our approach defeats the baselines in 17 out of 20 experiments performed

here further enriches the contributions of our approach to be applied in the

unbalanced environment of credit scoring.

As found out in the previous experiments, we also realized that the DFWNB

was the best competitor for this experiment. However, it is noticeable that it

is biased when high levels of unbalance come into the game, a scenario that is

more likely to happen in real world credit scoring datasets. Such an approach

could defeat our approach in only two experiments in this subsection, but was

the best one in just one experiment (AUC of 6.66% dataset, leftmost part of

fourth row in Figure 9). Notwithstanding, with its good results, we believe that

both approaches can be fused for a better credit scoring. This can be done, for

example, by applying different weights for decisions of these different classifiers.
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6. Conclusions and Future Work

The Credit Scoring machine learning techniques cover a crucial role in many

financial contexts (i.e., personal loans, insurance policies, etc.), since they are

used by financial operators in order to evaluate the potential risks of lending,

reducing therefore the losses due to unreliable users. However, several issues are

found in such an application, such as the data imbalance problem in datasets,

where the number of unreliable cases are quite smaller than the number of reli-

able cases, and also the cold-start problem, where there is scarcity or absence of

non-reliable previous cases. These issues can seriously affect machine learning

approaches aimed at classification of new instances in the Credit Score environ-

ment.

This paper proposes a novel approach of Credit Scoring that exploits entropy-

based criteria in order to build a model able to classify a new instance without

the knowledge of past non-reliable instances. Our approach works by compar-

ing the entropy behavior of existing reliable samples before and after adding an

instance under investigation. This way, our approach can operate in a proactive

manner, facing the cold-start and the data imbalance problems that reduce the

effectiveness of the canonical approaches of Credit Scoring. The experimental

results underline two main aspects related to our approach: one the one hand, it

has competitive performances if compared to existing classifiers when the train-

ing set is composed of slightly unbalanced (or almost balanced) classes; on the

other hand it is able to outperform its competitors specially when the training

process is characterized by an unbalanced distribution of training data. This

last aspect represents an important result, since it shows the capability of the

proposed approach to operate in scenarios where the canonical approaches of

machine learning are not able to achieve optimal performance. This is especially

true in the typical contexts of Credit Scoring, where an unbalanced distribution

of data is usually present. Even without totally replacing the canonical ap-

proaches of Credit Scoring, our approach offers the possibility to overcome the

cold-start issue, together with the capability to manage the unbalanced distribu-
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tion of data, giving the opportunity to be jointly used with existing approaches

and thus resulting in an effective hybrid model.

According to the previous considerations, a direction of future work where

we are headed to is to evaluate the advantages and disadvantages related to the

inclusion of the default cases in the model definition process, as well as the eval-

uation of our approach in heterogeneous scenarios that involve different types of

financial data, such as those generated by an electronic commerce environment.

A final goal is then to define a novel approach (hybrid or only based on the

proposed approach) able to operate in all possible scenarios, effectively.
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