
Future Generation Computer Systems 102 (2020) 259–277

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Dissecting Ponzi schemes on Ethereum: Identification, analysis, and
impact✩

Massimo Bartoletti ∗, Salvatore Carta, Tiziana Cimoli, Roberto Saia
Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Italy

a r t i c l e i n f o

Article history:
Received 21 January 2018
Received in revised form 2 July 2019
Accepted 8 August 2019
Available online 14 August 2019

Keywords:
Smart contracts
Cryptocurrencies
Ponzi schemes
Electronic frauds

a b s t r a c t

Ponzi schemes are financial frauds which lure users under the promise of high profits. Actually,
users are repaid only with the investments of new users joining the scheme: consequently, a Ponzi
scheme implodes soon after users stop joining it. Originated in the offline world 150 years ago, Ponzi
schemes have since then migrated to the digital world, approaching first the Web, and more recently
hanging over cryptocurrencies like Bitcoin. Smart contract platforms like Ethereum have provided
a new opportunity for scammers, who have now the possibility of creating ‘‘trustworthy’’ frauds
that still make users lose money, but at least are guaranteed to execute ‘‘correctly’’. We present a
comprehensive survey of Ponzi schemes on Ethereum, analysing their behaviour and their impact
from various viewpoints.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The advent of Bitcoin [1,2] has given birth to a new way to ex-
change currency, allowing secure and (almost) anonymous trans-
fers of money without the intermediation of trusted authorities.
This has been possible by suitably combining several techniques,
among which digital signature schemes, moderately hard ‘‘proof-
of-work’’ puzzles, and the idea of blockchain, an immutable public
ledger which records all the money transactions, and is main-
tained by a peer-to-peer network through a distributed consensus
protocol.

Soon after Bitcoin has become widespread, it has started
arousing the interest of criminals, eager to find new ways to
transfer currency without being tracked by investigators and
surveillance authorities [3].

Recently, Ponzi schemes [4] – a classic fraud originated in
the offline world at least 150 years ago – have approached the
digital world, first on the Web [5], and more recently also on
Bitcoin [6]. Ponzi schemes are often disguised as ‘‘high-yield’’
investment programs. Users enter the scheme by investing some
money. The actual conditions which allow to gain money depend
on the specific rules of the scheme, but all Ponzi schemes have
in common that, to redeem their investment, one has to make
new users enter the scheme. A more authoritative definition

✩ Work partially supported by Aut. Region of Sardinia under grant P.I.A. 2013
‘‘NOMAD’’.

∗ Correspondence to: Dipartimento di Matematica e Informatica, Università
degli Studi di Cagliari, via Ospedale 72, 09124 Cagliari, Italy.

E-mail address: bart@unica.it (M. Bartoletti).

of Ponzi schemes comes from the U.S. Securities and Exchange
Commission (SEC)1:

‘‘A Ponzi scheme is an investment fraud that involves the payment
of purported returns to existing investors from funds contributed
by new investors. Ponzi scheme organizers often solicit new in-
vestors by promising to invest funds in opportunities claimed
to generate high returns with little or no risk. With little or no
legitimate earnings, Ponzi schemes require a constant flow of
money from new investors to continue. Ponzi schemes inevitably
collapse, most often when it becomes difficult to recruit new
investors or when a large number of investors ask for their funds
to be returned.’’

Often, the investment mechanism of Ponzi schemes creates a
pyramid-shape topology of users, having at the top level the ini-
tiator of the scheme, and at level ℓ+1 the users who compensate
the investment of those at level ℓ. The scheme will eventually
collapse because at some point it will no longer be possible to
find new investors, as their number grows exponentially in the
number of levels of this pyramid. Therefore, users at the top levels
of the pyramid will gain money, while those at the bottom levels
will just lose their investment.

Despite many investors are perfectly conscious of the fraudu-
lent nature of these schemes, and of the fact that they are illegal
in many countries, Ponzi schemes continue to attract remark-
able amounts of money. A recent study [6] estimates that Ponzi
schemes operated through Bitcoin have gathered more than 7

1 Source: www.sec.gov/spotlight/enf-actions-ponzi.

https://doi.org/10.1016/j.future.2019.08.014
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.08.014
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.08.014&domain=pdf
mailto:bart@unica.it
https://www.sec.gov/spotlight/enf-actions-ponzi.shtml
https://doi.org/10.1016/j.future.2019.08.014

260 M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277

millions USD in the period from September 2013 to September
2014.2

‘‘Smart’’ Ponzi schemes. The spread of smart contracts, i.e., com-
puter programs whose correct execution is automatically en-
forced without relying on a trusted authority [7], creates new
opportunities for fraudsters. Indeed, implementing Ponzi schemes
as smart contracts would have several attractive features:

1. The initiator of a Ponzi scheme could stay anonymous,
since creating the contract and withdrawing money from
it do not require to reveal her identity;

2. Since smart contracts are ‘‘unmodifiable’’ and ‘‘unstop-
pable’’, no central authority (in particular, no court of law)
would be able to terminate the execution of the scheme,
or revert its effects in order to refund the victims. This
is particularly true for smart contracts running on permis-
sionless blockchains, which are controlled by a peer-to-peer
network of nodes.

3. Investors may gain a false sense of trustworthiness from
the fact that the code of smart contracts is public and
immutable, and their execution is automatically enforced.
This may lead investors to believe that the owner cannot
take advantage of their money, that the scheme would run
forever, and that they have a fair probability of gaining the
declared interests.

All these features are made possible by a combination of
factors, among which the growth of platforms for smart con-
tracts [8], which advertise anonymity and contract persistence as
main selling points, and the fact that these technologies are very
recent, and still live in a grey area of legal systems [9,10].

Understanding the behaviour of ‘‘smart’’ Ponzi schemes would
be crucial to devise suitable intervention policies. To this purpose,
one has to analyse various aspects of the fraud, answering several
questions: how many victims are involved? How much money is
invested? What are the temporal evolution and the lifetime of a
fraud? What kind of users fall in these frauds? Can we recognize
fingerprints of Ponzi schemes during their execution, or possibly
even before they are started? Investigating on these issues would
help to disrupt this kind of frauds.

Contributions. This paper is the first comprehensive survey on
Ponzi schemes in Ethereum [11], the most prominent platform for
smart contracts so far. We construct a dataset of Ponzi schemes,
and we analyse them from various perspectives. More specifically,
our contributions can be summarized as follows:

• a set of criteria for determining when a smart contract
implements a Ponzi scheme. Our criteria take into account
only the logic implemented by the contract to gather and
distribute money, while neglecting external factors, like e.g.,
the way the scheme is advertised or gamified.

• a public dataset of Ponzi schemes deployed on Ethereum
(goo.gl/CvdxBp), Coherently with our classification cri-
teria, the dataset is constructed by examining the source
code of contracts. We start from the contracts whose source
code is available on blockchain explorers, finding among
them 138 Ponzi schemes. We expand this collection to 184
schemes, by searching the blockchain for contracts whose
bytecode is highly similar to a contract already classified as
Ponzi. False negatives are excluded by manually inspecting
their decompiled code.

2 This estimate considers both traditional Ponzi schemes which also accept
payments in bitcoins, and schemes that only handle bitcoins.

• an open-source tool (github.com/blockchain-unica/ethereu
m-ponzi) which extracts from the Ethereum blockchain all
the transactions of the Ponzi schemes in our dataset, records
all the incoming and outgoing movements of money, and
computes the analyses presented in this paper.

• an analysis of the source code of the contracts in our col-
lection (Section 4). We discover that most contracts share a
few common patterns, and that many of them are obtained
by minor variations of already existing ones. We devise a
rough taxonomy of Ponzi schemes, which classifies them
according to the pattern used to redistribute payouts. We
show that the schemes in each category fail to achieve a
fair distribution of money. Further, we spot several security
vulnerabilities in the analysed contracts, which could be
exploited by adversaries to steal money.

• a measure of the economic impact of Ponzi schemes, quanti-
fying the overall value exchanged through them (Section 5).

• a measure of the gains and losses of the users of Ponzi
schemes (Section 6). We focus on the top 10 schemes (those
with the highest number of transactions), with most in-
teresting features (number of users, transactions, or ether
exchanged). In most cases we observe the typical pattern of
Ponzi schemes: a few users gain a lot, while the majority of
users simply lose their money.

• an analysis of the temporal behaviour of Ponzi schemes
under various viewpoints (Section 7). First, we investigate
the lifetime of Ponzi schemes, an important indicator to
predict when a scheme is going to collapse. Then, we anal-
yse the correlation between inflow and outflow of con-
tracts over time. Finally, we measure the monthly volume
of transactions.

• a measure of the inequality of payments to and from the
schemes (Section 8). This indicator may reveal how scam-
mers select their victims: a fair distribution of payments
means that the scheme is fed by a large number of victims
who pay small amounts of money; instead, an unequal dis-
tribution often means that the scheme profits from a small
number of ‘‘big fishes’’ who invest a lot of money.

• a set of guidelines that users could follow to protect them-
selves against Ponzi schemes (Section 9).

2. Ethereum in a nutshell

Ethereum [11] is a decentralized virtual machine, which can
execute programs – called contracts – written in a Turing-complete
bytecode language, called EVM [12]. Every contract has a perma-
nent storage where to keep data, and a set of functions which
can be invoked either by users or by other contracts. Users and
contracts can own a crypto-currency (called ether, or ETH in
short), and send/receive ether to/from users or other contracts.

Users can send transactions to the Ethereum network in order
to: (i) create new contracts; (ii) invoke a function of a contract;
(iii) transfer ether to contracts or to other users. All the trans-
actions sent by users, called external transactions, are recorded
on a public, append-only data structure — the blockchain. Upon
receiving an external transaction, a contract can fire some internal
transactions, which are not explicitly recorded on the blockchain,
but still have effects on the balance of users and of other con-
tracts.

Since transactions can move money, it is crucial to guar-
antee that their execution is performed correctly. To this pur-
pose, Ethereum does not rely on a trusted central authority:
rather, each transaction is processed by a decentralized network
of nodes. There is a consensus protocol to address mismatches
(due e.g., to failures or to attacks), which is currently based on
a ‘‘proof-of-work’’ puzzle. The security of the consensus protocol

http://goo.gl/CvdxBp
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi

M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277 261

Fig. 1. A simple wallet contract.

relies on the fact that following the protocol is more convenient
than trying to attack it. Indeed, nodes receive economic incentives
for correctly performing all the computations required by the
protocol. The execution of contracts is guaranteed to be correct,
as long as the adversary does not control a very large portion of
the computational power of the network [13].

Contracts. Abstractly, contracts can be seen as objects in object-
oriented languages, which are composed of fields and functions.
A user can invoke a function by sending a suitable transaction to
the Ethereum nodes. The transaction must include the execution
fee (for the miners), and may include a transfer of ether from the
caller to the contract.

We illustrate contracts through a small example (AWallet,
in Fig. 1), which implements a personal wallet associated to an
owner. Rather than programming it directly as EVM bytecode,
we use Solidity, a Javascript-like programming language which
compiles into EVM bytecode [14]. The contract can receive ether
from other users, and its owner can send (part of) that ether to
other users via the function pay. The hashtable outflow records
all the addresses3 to which it sends money, and associates to
each of them the total transferred amount. The hashtable inflow
records all the addresses from which it has received money. All
the ether received is held by the contract. Its amount is automati-
cally recorded in balance: this is a special variable, which cannot
be altered by the programmer. When a contract receives ether,
it also executes a special function with no name, called fallback
function.

The function AWallet at line 6 is a constructor, run only once
when the contract is created. The function pay sends amount wei
(1wei = 10−18ETH) from the contract to recipient. At line 9
the contract throws an exception if the caller (msg.sender) is
not the owner, or if some ether (msg.value) is attached to the
invocation and transferred to the contract. Since exceptions revert
side effects, this ether is returned to the caller (who however
loses the fee). At line 10, the call terminates if the required
amount of ether is unavailable; in this case, there is no need
to revert the state with an exception. At line 11, the contract
updates the outflow registry, before transferring the ether to
the recipient. The function send used at line 12 to this purpose
presents some quirks, e.g. it may fail if the recipient is a contract.
The fallback function at line 16 is triggered upon receiving ether,
when no other function is invoked. In this case, the fallback
function just updates the inflow registry. In both cases, when
receiving ether and when sending, the total amount of ether of
the contract, stored in variable this.balance, is automatically
updated.

3 Addresses are sequences of 160 bits which uniquely identify contracts and
users.

Fig. 2. Criteria for classifying a contract as a Ponzi scheme.

3. Collection of Ponzi schemes

In this section we establish a set of criteria for classifying
contracts as Ponzi schemes. We then describe our methodology
for constructing a collection of Ponzi schemes, and for extracting
the related transactions.

3.1. What is a ‘‘smart’’ Ponzi scheme?

We start by clarifying what is considered a Ponzi scheme in
this paper. The first key choice that we make is to restrict to the
schemes which are implemented as smart contracts — or ‘‘smart’’
Ponzis [15]. This choice rules out scams which use Ethereum
only as a mean of payment (or just for advertisement). These
scams include some well-known ‘‘high-yield’’ investment pro-
grams, many of which are reported on the blacklist maintained
by BadBitcoin4 We chose to exclude this kind of scams from our
analysis, since it is seldom possible to retrieve any information
about the Ethereum addresses they use (if any).

In Fig. 2 we propose four requirements to determine if a
contract is a Ponzi scheme, based exclusively on the logic im-
plemented within the contract. When a contract satisfies all four
requirements, we classify it as a Ponzi scheme.

• R1 asks that the contract distributes money to investors,
i.e. users who join the contract by sending some money
to it. This requirement does not put any constraints on
the logic used to distribute the money, so R1 alone is not
enough to classify a contract as Ponzi: for instance, gambling
games, lotteries, insurances and bonds, satisfy R1. However,
R1 rules out the contracts which provide users with some
kind of assets, but do not implement the logic to distribute
them: rather, these assets are exchanged through external
marketplaces, like cryptocurrency exchanges. This is the
case, e.g., of most implementations of ERC-20 tokens [16],
among which Initial Coin Offerings [17].

4 https://badbitcoin.org/thebadlist/index.php.

https://badbitcoin.org/thebadlist/index.php

262 M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277

• R2 asks that the money gathered by the contract comes from
investors, only. This rules out the cases where the money
distributed to investors comes from external sources, like
e.g. a bank which pays the interests of a ‘‘smart’’ bond, or
a bookmaker who pays off bets using his own funds.

• R3 asks that each investor makes a profit, provided that new
investors continue to send money to the contract. Together
with the first two requirements, this implies that users make
profits only through the investments of other users. Note
that gambling games, betting, and lotteries violate R3: there,
even if there is a constant flow of investments, an unlucky
user is not guaranteed to make any profit (e.g., he can always
lose the lottery).

• R4 asks that the risk of losing one’s investment grows with
the time one joins the scheme. This is a landmark feature
Ponzi schemes also in the real world: at a certain point it
becomes difficult to find new investors, so no one makes
profits anymore, and the scheme collapses.

Compared to the SEC definition of Ponzi scheme quoted in Sec-
tion 1, the requirements R1 and R2 together capture that fact
that a Ponzi scheme ‘‘involves the payment of purported returns
to existing investors from funds contributed by new investors’’; R3
corresponds to the fact that they ‘‘require a constant flow of money
from new investors to continue’’; R4 implies that they ‘‘inevitably
collapse, most often when it becomes difficult to recruit new in-
vestors’’. Note that our requirements do not capture the fact that
‘‘Ponzi scheme organizers often solicit new investors by promising to
invest funds in opportunities claimed to generate high returns with
little or no risk’’. This is because, by design, our requirements are
based exclusively on the logic implemented within the contract,
while advertising is done outside the contract code.

Ponzi vs. pseudo-Ponzi schemes. Note that requirement R4 rules
out some contracts which are sometimes blamed to be Ponzi
schemes, even if the Ponzi mechanism to distribute investments
is not hard-coded in the contract. This is the case e.g. of contracts
which implement crypto-collectible markets — the most notable
instance being CryptoKitties, a game where players can breed and
trade virtual cats, implemented as ERC-721 tokens. Indeed, R4 is
violated, because a lucky user, regardless of the moment when he
joins the contract, may breed a rare cat, and make a profit by its
sale.

For similar reasons, R4 rules out Fomo3D, a sort of game which
is sometimes pointed out as a Ponzi scheme. Fomo3D works as a
lottery game where, at each round, players can purchase some
‘‘keys’’, and the last buyer in the round wins a jackpot. Whenever
a key is purchased, the deadline to the end of the round is
extended, and the earning from key selling is split in two parts:
a part is added to the jackpot, while the other is shared among
the participants in the round. The lottery mechanism decouples
the time when a user joins the scheme from its risk of losing her
investment, violating R4.

Requirement R4 rules out also PoWH3D, another alleged Ponzi
scheme. PoWH3D implements a token and its exchange: the con-
tract mechanism ensures that the value of the token grows when
people buy, and decreases when they sell; further every token
trade has a 10% fee. Investors can earn in three ways: by selling
a token for more than it was paid; by inviting a new investor to
buy tokens (in this case, they get the fees of the invitee); and
by receiving the fees paid by a (not invited) investor (these fees
are distributed among all the token holders). Requirement R4 is
violated because investing late, e.g. in a period of stagnation, does
not necessarily imply a greater risks of losing one’s investment,
since the mechanism ensures that the value of tokens is low.

We remark that, even if a contract does not explicitly im-
plement a Ponzi mechanism (so, violating some of our require-
ments), it may potentially induce a behaviour which closely re-
sembles that of a Ponzi scheme. For instance, CryptoKitties and
its followers gave rise to a market of crypto-collectibles which is
often compared to the ‘‘tulip mania’’, a large speculative bubble in
the 1600s. The extreme popularity of CryptoKitties almost caused
the congestion of the Ethereum network in 2017; some virtual
cats were sold for more than 170KUSD, and the market has
processed more than $12 million in sales of virtual cats [18].

3.2. Collection of Ponzi schemes

To construct a dataset of Ponzi schemes, we start by retriev-
ing the Solidity code of contracts published on the Ethereum
blockchain. Since the blockchain only stores the EVM bytecode, to
this purpose we rely on the blockchain explorer Etherscan, which
allows developers to upload the Solidity code of their contracts,
and verifies that their compilation matches the EVM code on the
blockchain.5

By manually inspecting the Solidity code of these contracts, we
detect 138 contracts which satisfy all the requirements in Fig. 2,
and therefore can be classified as Ponzi schemes. Since all the
contracts in this sample are relatively small (< 120 LOC, including
comments), manual inspection was accurate enough to check the
requirements. As a further check, for all these contracts we study
the pattern they use to redistribute money, which is the basis
for our taxonomy in Section 4. To stay on the safe side (i.e., to
avoid false positives), we have not included in this collection
those contracts which are too complex to establish with certainty
whether they satisfy the requirements or not.

We perform a second search phase to enlarge our collection.
More specifically, we search the Ethereum blockchain for con-
tracts whose bytecode is similar to that of some Ponzi scheme
identified in our initial collection. This is done through the fol-
lowing steps:

1. We use a Monte Carlo algorithm to estimate the normal-
ized Levenshtein distance [20] (NLD) between two arbitrary
EVM contracts on the Ethereum blockchain. The NLD is a
standard measure of similarity between two strings. The
non-normalized Levenshtein distance between two strings
measures the number of character which one has to change
to transform the first string in the second one (e.g., the dis-
tance between ‘‘Ponzi’’ and ‘‘Banzai’’ is 3). The normalized
version is a metric, and its value is a real number ranging
between 0 (perfect equality) and 1 (perfect inequality).
After these calculations, we estimate as 0.79 the NLD be-
tween two arbitrary EVM contracts downloaded from the
blockchain.

2. We compute the NLD between the contracts in our initial
sample, and all the contracts on the Ethereum blockchain.
We consider as a potential Ponzi scheme any contract with
a NLD less than 0.35 from some contract in our sample.
The two values 0.35 and 0.79 are sufficiently far apart
to ensure a low incidence of false positives, i.e. contracts
whose NLD from the initial sample is below 0.35, but they
are not Ponzi schemes. This search resulted in 0 potential
new Ponzi schemes, not included in our original collection
of 138 contracts.

5 When we first created our collection in 2017, it was still possible to list
all contracts with verified source code through the URL https://etherscan.io/
contractsVerified. Currently, only the last 500 contracts with verified source
are listed. To overcome this limitation, one can use a blockchain parser, like
e.g. BlockAPI [19], to scan all the transactions on the blockchain, and fetch
their Solidity code from Etherscan. For a contract address xyz, the URL https:
//etherscan.io/address/xyz#code contains the contract Solidity code, if verified
by Etherscan.

https://etherscan.io/contractsVerified
https://etherscan.io/contractsVerified
https://etherscan.io/address/xyz#code
https://etherscan.io/address/xyz#code

M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277 263

Table 1
Top-10 Ponzi schemes by amount of invested ether.
Contract name #Trans. ETH USD Users Transactions

In Out In Out In Out Paying Paid First Last

DynamicPyramid 444 143 7 474 7 437 84 187 83 541 175 51 2016-02-23 2018-10-01
DianaEthereum-x1.8 288 168 5 307 5 303 61 166 61 266 129 84 2016-03-08 2018-05-17
Doubler2 395 161 4 858 4 825 26 376 26 220 211 68 2016-02-16 2018-11-22
ZeroPonzi 627 499 4 490 4 489 49 816 49 770 47 28 2016-04-04 2017-10-27
Doubler 156 57 3 073 3 073 31 292 35 927 92 17 2016-02-19 2018-06-26
Government 723 846 2 939 2 939 35 738 40 066 40 27 2016-03-08 2017-03-20
Rubixi 686 66 1 367 1 363 16 986 16 775 104 28 2016-03-14 2019-01-24
ProtectTheCastle2 890 1257 1 332 1 332 186 040 190 802 101 68 2016-03-20 2018-02-22
EthereumPyramid 978 339 986 917 5 044 5 290 327 125 2015-09-07 2018-04-11

Total (184 schemes) 18 925 9100 43 881 43 332 630 662 702 878 2378 1232 — —

3. We apply the Online Solidity Decompiler6 to the EVM
bytecode of the 0 contracts found in the second phase,
and we manually compare the obtained Solidity code with
that of the corresponding Ponzi scheme found in the first
phase. In 46 cases we find a substantial match between the
contract codes, so we add these contracts to our collection.

In conclusion, we end up with a dataset of 184 Ponzi schemes,
which we make available at goo.gl/CvdxBp (an excerpt is in Ta-
ble 1 in Section 5). We stress that our collection does not include
all the Ponzi schemes which have been published on Ethereum
over the years. For instance, the contract PonziUnlimited7 is
blatantly a Ponzi scheme, but it is not immediate to detect if its
logic satisfies the requirements in Fig. 2, so we do not include it
in our collection.8

3.3. Extraction of transactions

For each Ponzi scheme in our dataset, we gather all its transac-
tions (both external and internal) from the Ethereum blockchain.
More specifically, for each transaction we record the following
data: (i) the number of the enclosing block; (ii) the date when it
was published on the blockchain; (iii) the address of the sender;
(iv) the address of the receiver; (v) the amount of ether trans-
ferred by the transaction; (vi) a boolean value which records
whether the transaction execution resulted in an error; (vii) a
boolean value which indicates whether the transaction is external
or internal. The scripts that we have developed to this pur-
pose exploit the Etherscan Ethereum Developer APIs,9 and they
are available at github.com/blockchain-unica/ethereum-
ponzi.

4. Anatomy of Ponzi schemes

In this section we analyse the source code of Ponzi schemes, to
understand their behaviour, and find analogies between different
schemes. We then discuss some security issues found in the
analysed contracts.

4.1. Taxonomy of Ponzi schemes

Based on the analysis of the contracts source code carried out
in Section 3.2, we devise a rough taxonomy of Ponzi schemes,

6 https://ethervm.io/decompile.
7 https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587f

Cc27.
8 A relevant question, without an easy answer, would be that of estimating

the total number of smart Ponzi schemes on Ethereum. The analysis in [21]
conjectures that there could be 507 smart Ponzi schemes created on Ethereum
before September 2017.
9 https://etherscan.io/apis.

which classifies them according to the pattern used to redis-
tribute money. Our taxonomy consists of four categories, whose
archetypal representatives are displayed in Figs. 3–6.10 We dis-
cuss below the categories of our taxonomy.

Tree-shaped schemes use a tree data structure to induce an
ordering among users. Whenever a user joins the scheme, she
must indicate another user as inviter, who becomes her parent
node. If no inviter is indicated, the parent will be the root node,
i.e. the owner of the scheme. In most schemes, the amount of
money to be invested is chosen by the user, and there is a lower
bound to that amount. The money of the new user is split among
her ancestors with the logic that the nearest an ancestor is, the
greater her share. Since there is no limit to the number of children
of a node, the more children (and descendants) a node has, the
more money it will make.

We show in Fig. 3 an archetypal scheme of this kind. To join
the scheme, a user must send some money, and must indicate
an inviter that will be her parent node. If the amount is too
low (line 15), or if the user is already present (line 16), or if the
inviter does not exist (line 17), the user is rejected; otherwise
she is inserted in the tree (line 19). Once the user has joined,
her investment is shared among her ancestors (lines 25-29),
halving the amount at each level.

In this scheme, a user cannot foresee how much she will gain:
this depends on how many users she is able to invite, and on how
much they will invest. The only one who is guaranteed to have
profit is the owner, i.e. the root node of the tree. Examples for
this kind of scheme are Etheramid and DynamicPyramid.

Chain-shaped schemes are a special case of tree-shaped
schemes, where each node of the tree has exactly one child (so,
the ordering induced among users is linear). The schemes in
this category usually multiply the investment by a predefined
constant factor, which is equal for all users. The scheme starts
paying back users, one at a time, in order of arrival, and in full: all
new investments are gathered until the due amount is obtained.
At that moment, the contract sends the payout back in a single
shot, and moves on to the next user in the chain. The amount to
be invested can be fixed, or free, or have a lower bound. Usually,
the contract owner retains a fee from each investment.

We show in Fig. 4 an archetypal chain-shaped scheme, which
doubles the investment of each user. To join the scheme, a user
sends msg.amount ETH to the contract, hence triggering the fall-
back function (line 14). The contract requires a minimum fee of
1ETH: if msg.amount is below this minimum, the user is rejected
(line 15); otherwise, her address is added to the array (line 17),

10 The code snippets presented there assume version v0.2.2 of the Solidity
compiler, which is the version used by most of the contracts in our collection.
Although more recent versions of Solidity change the way to declare functions
and to manage arrays, these changes do not really affect the spirit of our
examples.

http://goo.gl/CvdxBp
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://github.com/blockchain-unica/ethereum-ponzi
https://ethervm.io/decompile
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/address/0x582b2489710A4189AD558B6958641789587fCc27
https://etherscan.io/apis

264 M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277

Fig. 3. A tree-shaped scheme.

Fig. 4. A chain-shaped scheme.

and the array length is incremented.11 The contract owner retains
10% of the investment (line 22). With the remaining funds, the
contract tries to pay back the previous users. If the balance is
enough to pay the user at index paying, the contract pays the
user her investment multiplied by 2 (line 25). After that, the
contract tries to pay the next user, and so on until the balance
is enough.

In this scheme, a user can foresee exactly how much she will
gain, provided that the scheme keeps running; the amount is
proportional to what she has invested. Examples of this kind are
Doubler, DianaEthereum, and ZeroPonzi.

Waterfall schemes are similar to chain shaped-schemes for the
user ordering, yet different for the logic of money distribution.
Each new investment is poured along the chain of investors, so
that each can take their share. Since the logic is first-come first-
served, and the distribution starts always from the beginning of
the chain, the users later in the chain are likely to never get any
money.

We show in Fig. 5 an archetypal scheme of this kind, with an
entry toll of 1ETH (line 19), 10% fees for the owner (line 24),
and a payout of 6% of user investments at each turn. The payout
logic starts at line 27. If the contract balance is enough to pay
the first user in the array (at position pos = 0), then the contract
sends to that user 6% of her original investment (lines 29-30).
After that, the contract tries to pay the next user in the array,
and so on until the balance is exhausted. On the subsequent
investment, the array is iterated again, still starting from the first
user.

To ensure that all users receive payouts (coherently with re-
quirement R3), the investments of new users must grow propor-
tionally to the number of users. Examples for this kind of scheme
are TreasureChest and PiggyBank.

Handover schemes are an instance of chain-shaped scheme,
where the entry toll is determined by the contract, and it in-
creased each time a new investor joins the scheme. The toll of a

11 In Solidity, dynamicarrays can be resized by changing the length member.

new investor is given in full to the previous one: since the entry
toll is increasing, the previous investor makes an instant profit. At
each moment, there is only one investor who is receiving money,
and as soon as she is paid, she hands that privilege over the next
user.

An archetypal example is shown in Fig. 6. To join the scheme
a user must send at least price ETH to the contract, hence
triggering the fallback function of line 11. The contract forwards
that sum to the former user, minus a fee which is kept within the
contract (line 13). Then, the address of the new user is recorded
(line 14), and the price is doubled (line 15). The contract owner
can withdraw her share by calling sweepCommission.

In handover schemes, at the time of the investment users
know exactly how much they will gain. However, since the toll
increases as the scheme goes on, later users are more likely to lose
their money (coherently with requirement R4). A paradigmatic
representative of handover schemes is KingOfTheEtherThrone.

4.2. Analysis of money redistribution

Ponzi schemes have the peculiarity that each investor can
make a profit, provided that enough investors invest enough
money in the contract, after him (requirement R3). Focusing on
the kinds of schemes identified in the previous section, we now
study how many users an investor must wait for, and how much
they must invest to make her (say) double her money.

Chain-shaped schemes. Consider a chain-shaped scheme which
doubles the received money, accepts entry tolls of exactly 1ETH ,
and has no owner fees except the first 1ETH sent to the contract.
Let us assume that the first user U1 sends 1ETH . Her money
is given to the owner, and so it is removed from the contract,
whose balance is 0. For U1 to see back her 1ETH plus the other
one promised (since the contract doubles the investment), he
must wait for two others users U2 and U3 to join the scheme, by
sending 1ETH each.

In Fig. 7, each node represents one user, and its children are
the users needed to redeem her share. So, U2 must wait for U1 to

http://solidity.readthedocs.io/en/develop/types.html#members

M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277 265

Fig. 5. A waterfall scheme.

Fig. 6. An handover scheme.

redeem her share, and then he must wait for U3 and U4 to send
money (hence he has to wait a total of 3 users). User U3, who is
the last one on her level, must wait that the subsequent level is
full, which gives a total of 4 users to wait. In general, a user Uk at
level i must wait that all those users on the previous level have
redeemed their share, and then he must wait for all the ones on
her level that have arrived before him. If Uk is the first node at
level i, he must wait for all the other users at level i to join, plus
the two ones needed to redeem her share. This needs 2i

− 1 + 2
users. Since the amount of nodes up to level i − 1 is 2i

− 1 and
since Uk is the first at level i, we have that k = 2i and hence, in
the best case, Uk must wait k + 1 users. Instead, if Uk is the last
user at level i, he must wait for all the other users at level i + 1.
This needs 2i+1 users. Since, k = 2i+1

− 1, in this case Uk must
wait for k + 1 users. For instance, a user joining the scheme at
position 3 must wait 4 new users, and to invest 4ETH , in order to
double her investment; instead, a user at position 50 must wait
for 51 new users.

Although this simple example considers a scheme with no fees
and a fixed investment for each user, the general considerations
about the chances of redeeming one’s investment remain true for
all the contracts in our collection. In a contract which poses no
limits on how much one can invest, an unusually high investment
could make the contract stop sending payouts for a lot of time,
while accumulating the payout, thus discouraging new users to
join. Also, higher owner fees and higher multiplying factors will
slow the flow down so that our results constitutes a lower bound
to the number of users to be waited. For instance, the chain-
shaped scheme Doubler2 doubles the invested amount, asks a
minimum investment of 1ETH , and 10% fee. The contract has
paid out only up to the 68th user out of 210. Looking at its
transactions, we see that the most common toll is between 1
to 5ETH , but here and there, there are some higher ones (up to
50ETH) which make the system very slow to fill up a level.

Tree-shaped schemes. The considerations above hold as a lower
bound also for tree-shaped schemes, since they are slowed up by
the fact that new users could not all be descendant of a given
node.

Waterfall schemes. Assume a waterfall scheme with a fixed toll
of 1ETH , no fees, and which gives each user 10% of the amount
invested. For each new investor, the old ones are entitled of
0.1ETH: hence, 10 new users are needed to repay the investment
of the first user, and further 10 users to let her double her
investment. Note that for the first 10 users, the amount they are
giving is not entirely distributed: a part is left within the contract.
However, after the 10th investor joins the chain, the money she is
giving is not enough to be shared among all the users: from that
moment on, the contract must use its own funds to fill up the
gap. Eventually, also this amount will end: as the scheme goes
on, no matter how many other investors will join, only the first
10 users are guaranteed to receive shares.

So, to ensure that each user can double her investment, we
must make sure that investments are spread over all the users.
Let us now assume that, to join the scheme, a user must give
0.1ETH times number of users already in. So the first user will
invest 0, and the 11th user will invest 1ETH . With such a rule, if
the scheme contains n users, the kth user has given 0.1(k−1)ETH
while receiving 0.1(n−k)ETH . As the number of users grows, also
the received money grows. For instance, the 3rd user joining the
scheme must invest 0.2ETH , and will receive 0.4ETH as soon as
4 other users join in. Instead, the 50th user must give a toll of
4.9ETH , and must wait 98 new users to double the investment.
However, since the toll increases for each new investor, entering
the scheme is less appealing as the scheme goes on.

Handover schemes. In handover schemes, for an investor to re-
ceive a payout it is enough to wait one other user to join. How-
ever, since the toll keeps increasing, entering the scheme is less
appealing as the scheme goes on.

Overall, we have shown that the requirements R3 and R4
hold for all the kinds of schemes we have identified: namely,
each investor is guaranteed to earn money if enough money are
invested afterwards, but late investors have a greater the risk of
losing their investment.

266 M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277

Fig. 7. Payout tree for a scheme which doubles the invested money and accepts
exactly 1ETH from each user. The first ether is given to the owner.

4.3. Security issues

In this section we highlight several vulnerabilities we have
encountered in the implementations of Ponzi schemes, which
undermine their advertised behaviour. We will organize vulner-
abilities according to their effects: those harming investors, and
those harming the scheme itself.

Harming investors. Some vulnerabilities are due to bugs of the
code, which is some cases seem plain intentional: they harm
users while being profitable for the owner of the scheme. The
most common vulnerability is caused by an improper use of
the send primitive, whose security issues have been already
pointed out in [22,23]. If a send fails, it returns an error code:
if a contract does not check this error, it cannot acknowledge
that there has been a problem. So, in case of errors during the
send, the money remains within the contract, while the user
does not receive anything. Notably, the large majority of the
contracts we have analysed do not check that the ether transfer
succeeds. Their code is similar to that in Fig. 3 (line 27), Fig. 4
(line 22), Fig. 5 (line 29) and Fig. 6 (line 13). This vulnerability
is known, at least, since February 11st 2016, when the owner of
KingOfTheEtherThrone realized that there was too much ether
left on his contract12

Another issue affects many of the contracts which require a
lower bound on the entry toll. If the toll is not met, the user
is not allowed to join the scheme, and the sent amount should
be returned. However, some contracts (e.g., DynamicPyramid,
GreedPit, NanoPyramid, Tomeka), forget to return it to user,
and keep the amount by themselves (see e.g. Fig. 8 left). This is
a questionable, especially when the minimum amount is quite
relevant (e.g., in Tomeka the minimum is 1 ETH).

Another bug that benefits the owner is in PiggyBank.13 Ac-
cording to its advertisement,14 this is a waterfall scheme, where
the owner keeps 3% fees, and each user receives 3% of their
investment every time a new user joins the scheme. Hence, the
command to compute the owner fees should be as follows:

fees = amount/33

12 Source: www.reddit.com/r/ethereum/comments/44h1m1/.
13 Source: www.reddit/piggybank_earn_eth_forever.
14 Source: bitcointalk.org/topic=1410587.0.

However, the actual command used in PiggyBank is just a little
different:

fees += amount/33

This difference is subtle to spot, but relevant: indeed, the second
command makes the fees grow at each deposit, and consequently
the owner share subtracted to each investment steadily increases.
In practice, the fees calculated for the 7th deposit have exceeded
the deposit itself. Beside this, the global variable used to scan the
array (pos in Fig. 5) is not reset, unlike in line 25. Hence, at each
deposit, the iteration does not go from the first user to the last
one, but from the last to the last itself. Hence, only one user at
each deposit is paid, and only once. Notably, the conjunction of
these two bugs results in giving (almost) all the money invested
to the owner. Were only the second bug present, the contract
would have kept accumulating a lot of unredeemable ether.

Besides bugs hidden in the code, other dangers for users come
from functions which allow the owner to perform special oper-
ations, which can make the contract stray from its expected be-
haviour. One example is in DynamicPyramid, where the owner
can change the interest rate, and also his fee shares (see Fig. 8,
right). Other cases are in Doubler3 and TheGame, where the
owner can withdraw all the money in the contract (not only his
share, see Fig. 9, left), draining the amount to be given back to
investors. Further, some schemes have a selfdestruct function
that can be called only by the owner, and terminates the contract
(see Fig. 9, right). When this happens, investors lose their money.

Harming the scheme. Even when send commands are checked,
an improper handling of their return value can backfire, and can
expose the scheme to Denial-of-Service attacks or blackmailing.
An example is HYIP (see Fig. 10), a waterfall scheme where
investors are recorded in an array, and they are all paid at the end
of every day. The scheme checks that each send is successful: in
case of errors, it throws an exception. However, any error in one
of the send (lines 25 and 31) will revert all the ether transfers.
Errors may happen, e.g., for the following reasons: (i) the array
of investors grows so long that scanning it causes an out-of-gas
exception; (ii) the balance of the contract goes to zero somehow
in the middle of the for command (line 28), having not paid all
the investors; (iii) one of the investor is a contract, whose fallback
raises an exception. By exploiting the last issue, an attacker could
create a contract with a fallback which always throws (see e.g.,
Mallory in Fig. 10). The attacker contract sends a fraction of
ether to HYIP to enter in the array of investors; when HYIP tries
to send her the payout, the invoked fallback throws an exception.
Note that there is no way to cancel Mallory from the array,
hence HYIP is stuck, and its balance is frozen forever. At this
point, the attacker could blackmail HYIP, asking for money to
stop the attack (via stopAttack, line 21).

Although the unchecked send is the most widespread is-
sue, there are other bugs which affect contracts. For instance,
Government,15 has a notorious bug, which has been found, so
far, only in that contract. Government is a chain-shaped Ponzi
scheme with a quirk: in addition to the usual way to get back
money if enough users keep investing, someone can win a jackpot
if no one invests after him for 12 h. The list of users is kept in
an array, and when the 12 h have expired, the array is cleared.
However, the command used to clear the array had to scan each
of its elements. At a certain point, the array grew so long that
clearing every element required too much gas — more than the
maximum allowed per single transaction. Hence, the contract got
stuck, with the legit jackpot winner unable to claim her price.

15 Government is often called ‘‘GovernMental’’ or ‘‘PonziGovernMental’’ on
web forums.

https://www.reddit.com/r/ethereum/comments/44h1m1/
https://www.reddit.com/r/ethereum/comments/4br0za/piggybank_earn_eth_forever/
https://bitcointalk.org/index.php?topic=1410587.0

M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277 267

Fig. 8. On the left, rejecting enrolment without returning the fee in Tomeka. On the right, the function used by the owner of TheGame to set multipliers and fees.

Fig. 9. On the left, withdrawing all the balance in EthVentures1. On the right, a termination function in TheGame.

Fig. 10. On the left, a snippet of the code of HYIP, a scheme vulnerable to Denial-of-Service attacks. On the right, the corresponding attack.

Another bug concerns the constructor function, which is exe-
cuted just once at creation time (usually, to initialize the owner
of the contract with the address msg.sender of the sender of
the first transaction). The constructor must have the same name
of the contract, but we found four contracts where it has a
wrong name: GoodFellas, Rubixi, FirePonzi, and Stack-
yGame. Fig. 11 shows an extract from the first two. On the left,
Goodfellas has a function called LittleCactus (line 5) which
sets the owner, and then the owner is sent the fees collected so
far (line 11). On the right, Rubixi has a function called Dynam-
icPyramid (line 5) which sets the owner (called creator), and
then there is a function collectAllFees which can be invoked

to send the fees to the owner (line 11). Giving a wrong name to
the function meant to be a constructor is harmful: the function
does not qualify to be a constructor at all, and it can be invoked
by anyone at anytime, hence changing the owner address. When
users discovered the bug, they started to invoke these functions
to obtain the ownership and redeem the fees.

To conclude this list of issues, we illustrate a simple trick
that can be performed to shut down a chain-shaped scheme.
To illustrate it, we consider Doubler, which sends back the
amount multiplied by two. To perform the attack, Oscar needs
to invest a large amount of ether (say, 100ETH). Oscar first sends
100ETH to the contract, and then additional 100ETH (plus some

268 M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277

Fig. 11. Constructor bug in Goodfellas and Rubixi.

fees).16 Upon receiving the second slot, the scheme will pay all
the 200ETH back to Oscar, so he does not lose anything. From
that moment on, all the subsequent investments will be gathered
to pay back the second 100ETH of Oscar. If the average invested
amount is smaller than 100ETH , a large number of investors
(and a lot of time) are needed to pay back Oscar: hence, the
scheme will not be able to pay out other investors for a while.
Since the success of these schemes is based on the fact that
they are fast to pay out, it is likely that with this attack, the
scheme will be abandoned. This attack can be performed at any
time to disincentivize users to join a chain-shaped scheme.17 If
performed at an early stage of the lifecycle of the scheme, the
attack succeeds with a negligible loss of money.

5. Impact of Ponzi schemes

In Table 1 we draw some general statistics about all the 184
contracts in our collection, and we give details about the first
10 contracts in our list, ordered by total amount of invested
ether. Full data about the collected Ponzi schemes, including their
unique addresses, are reported online at goo.gl/CvdxBp.

The columns in Table 1 contain the number of incoming and
outcoming transactions, and the overall transferred value, both in
ETH and in USD (rounded to an integer). To convert the amount
of each transaction to USD, we use the average exchange rate on
the day of the transaction, obtained from etherscan.io.18 The
value transferred through a transaction has a different meaning,
according to whether the transaction is external or internal:

• external transactions are created by users to invoke contract
functions. These transactions can transfer some ether from
a user to the called contract. Hence, this amount of ether is
part of the inflow of the contract (i.e., its incoming ether).

• internal transactions are of two kinds: the ones sent to
the contract under observation, and the ones sent from it.
The first case happens when, instead of sending her money
directly to a Ponzi scheme, a user goes through another
contract (typically, a wallet contract): hence the amount
linked to the transaction is part of the inflow of the contract.
The second case happens when the contract sends a payout
to some user: in this case, the transaction amount is part of
the outflow of the contract.

Note that, similarly to [24] for Ponzi schemes on Bitcoin, also
in Ethereum we cannot precisely quantify the profit of scammers.
Indeed, it is not clear how to define who is the scammer: of
course the contract owner can be considered the originator of the

16 To guarantee the atomicity of the sends, Oscar sends the money through a
contract.
17 As far as we know, this attack has been performed only on contract
Quadrupler. See etherscan and bitcointalk for details.
18 Source: https://etherscan.io/chart/etherprice.

scam, but he may have more than one addresses through which
redeeming money. Hence, we do not know how to separate the
money sent to legit users from the money sent to scammers. A
rough over-approximation of the profit of scammers is the total
inflow of the scheme.

The columns ‘‘Paying users’’ and ‘‘Paid users’’ in Table 1 indi-
cate, respectively, the number of users who entered the scheme
(i.e., the distinct addresses that send money to the contract),
and the number of users that have received a payment from the
contract.

The columns ‘‘USD’’ and ‘‘ETH ’’ in Table 1 give a first measure
of the economic impact of Ponzi schemes on Ethereum. Notice
that ETH alone is not significant as a unit of measure: actually,
the exchange rate from ETH to USD has been highly volatile, as
shown by the diagram in Fig. 12. Overall, we observe that the
Ponzi schemes in our list collected 630 662USD from 2378 distinct
users. While the difference between incoming and outgoing ETH
is always non-negative (as contracts cannot send more ETH than
what they receive), the difference between incoming and outgo-
ing USD can be negative. This is not a contradiction: it can be
explained by the fact that the exchange rate between ETH and
USD has varied over time, as depicted in Fig. 12.

5.1. Statistics by schemes kind

In Table 2 we display the statistics about the impact of Ponzi
schemes grouped by scheme kind, according to the taxonomy
in Section 4. The columns show: the number of schemes for each
kind; the amount of incoming and outgoing ETH to the contract,
and the corresponding values in USD; the number of users that
invested in the scheme and that have received some payout; the
ratio between these two values.

We see that, out of all 184 contracts, almost the totality
are chain-shaped schemes (151). There are 12 schemes between
waterfall, tree-based and handover kinds, while a portion of 21
schemes has not found place in any of the analysed categories.
Mostly they are experiments, or variants of existing schemes, or
just singularities in their own way.

The source code of Ponzi schemes falling in the same category
features only slight differences between distinct instance: most
contracts only differ in the multiplication factor, in the applied
fees, or in the presence of auxiliary functions, like e.g. fields
getter/setter, or other utility functions for the owner. The low
variance in the code of Ponzi schemes is also witnessed by the
average normalized Levenshtein distance among their bytecode,
which is 0.54, far less than 0.79, the average distance between the
bytecode of two arbitrary contracts. This may suggest that, after
the first Ponzi schemes have been created, the subsequent ones
have been obtained by adapting the existing instances.

http://goo.gl/CvdxBp
https://etherscan.io
https://etherscan.io/address/0xa379bbdd0af814502eb9b38d475c7fa7411bb4ec
https://bitcointalk.org/index.php?topic=1426329.0
https://etherscan.io/chart/etherprice

M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277 269

Fig. 12. Ether/USD exchange rate (monthly average).

Table 2
Statistics by kind of scheme.
Kind #Num ETH USD Users

In Out In Out Paying Paid %

Tree-shaped 4 410 400 1 429 1 416 161 83 51%
Chain-shaped 151 41 514 40 170 587 086 599 347 1967 968 48%
Waterfall 4 452 444 8 836 11 261 111 82 73%
Handover 4 486 483 2 618 3 124 97 63 64%
Other 21 1 017 933 30 693 87 728 42 36 85%

Total 184 43 881 43 332 630 662 702 878 2378 1232 51%

6. Measuring gains and losses

We now study the distribution of gains and losses among
users. We expect to observe the common pyramidal pattern of
Ponzi schemes, where only a few users make profit from their
investment, while the vast majority loses money.

We start our analysis by considering two contracts: Dou-
bler2 (a chain-shaped scheme) and Etheramid1 (a tree-shaped
scheme).

Fig. 13 shows the gain in ether for each user who entered the
scheme Doubler2. A negative amount indicates a loss. The graph
shows that the vast majority of users has a balance close to zero,
while just a few of them have a substantial gain, with a peak of
486ETH . The integral of the graph is close to zero, i.e. the contract
has redistributed almost all the money it has received.

We now analyse the gain ratio, i.e. the ratio between received
ether versus invested ether. According to advertisement, which
promises to double the investment, each user should have a ratio
of exactly 2. Instead, Fig. 14 shows that, out of a total of 210 users,
142 never received any money back (the ones with label 0); 23
have a gain ratio between 0 and 1 (meaning that they barely were
able to regain what they had invested); 44 have a ratio between
1 and 2, and only one has a very high ratio (486).

Fig. 15 (left) shows the users with the highest gains. The user
who earned 486ETH has invested only 1ETH . Subsequent users
have a gain ratio strictly less than 2: this means that to have such
an high gain, they had to invest a lot of ether. Since Doubler2 is a
chain-shaped scheme which doubles the investment, from Fig. 15
we infer that the gaining users have invested more than once, and
sometimes the contract has not given the promised ether back.

Fig. 13 shows the gain of each user in Etheramid1. As before,
the majority of users lost their money. Only a few users gained
a little (up to 5ETH), and exactly one had an high income of
30ETH . Fig. 14 shows a behaviour similar to that of Doubler2.
From Fig. 15 we see that two users have a peculiar gain ratio: one
received 7ETH upfront an investment of 1ETH , and another one
(probably, the initiator of the scheme) received 30.6ETH without
investing money.

We now consider the other contracts in our collection. In Ap-
pendix A we show the diagrams of user gain, gain ratio, and
inflow–outflow, on a selection of 23 contracts, chosen among
those with the most interesting features, e.g. high volume of
payments, number of users, or number of transactions. The users-
gains diagrams show a similar pattern to Doubler2, notwith-
standing the differences in number of users, scheme type and
volume of ether exchanged of the contracts we have selected. In
general, the curve is quite shallow in the centre with a narrow
positive peak on the far right, and it stays mainly below the x-axis.
This means that a lot of users lose money; a few gain something,
and even less have extremely high incomes. Also, the difference
between inflow and outflow is almost zero — if we include the
owner among the users.

From the gain ratio diagrams in Appendix A, we observe that
the most numerous classes are those of users who never received
any money back, or have a ratio between 0 and 1. This means
that the majority of users could not gain anything. The percentage
of users not gaining anything is on average around 70% among
the contracts in our selection. In particular, Figure A.34 shows
that the most unfair contract is Doubler (where 88% of users
do not gain anything), followed by ShinySquirrels (87%) and
GreedPit (85%).

From the joint analysis of the gain ratio diagrams and of the
users with highest gains (Figure A.33), we see that just one or
two users per contract have exceptionally high revenues, and
that, in some cases, they have not invested money. Generally,
the exceptional high gains belongs to the owner, and are due to
the contract fees. In some cases, there is more than one owner:
e.g., EthereumPyramid has two owners, and Rubixi has six.
However, the case of Rubixi is singular: a bug in the code
allowed users to steal the role of the owner and hence to receive
the fees. In other cases, the scheme has no owner fees, and hence
the ratio graph is more levelled (e.g., in ZeroPonzi, 59% of users
do not gain anything), as the absence of fees allows for refunding
more users.

270 M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277

Fig. 13. Gain in ETH (y-axis) per user (x-axis).

Fig. 14. Number of users grouped by gain ratio for Doubler2 and Etheramid1. Label 0 means no money has been received; for n > 0, label n indicates a ratio
between n − 1 (strict) and n (included). Label ∞ indicates users who have never sent anything but have received something.

Fig. 15. Details of the 5 users who have gained most for Doubler2 and Etheramid1. Each row represents one user. Values are in ETH , cut to the first decimal
non-zero digit. Columns show: (1) how much the user has sent to the contract; (2) how much she has received, (3) difference between columns 2 and 1; (4) gain
ratio. The ratio of users who have sent nothing is denoted by ∞.

7. Evolution over time

In this section we study how Ponzi schemes behave over time.
In particular, in Section 7.1 we analyse the timing correlation be-
tween inflow and outflow; in Section 7.2 we analyse the lifespan
of Ponzi schemes; in Section 7.3 we observe how the volume of
payments evolves over time.

7.1. Inflow and outflow correlation

We now study the behaviour of inflow and outflow transac-
tions over time. Similarly to the previous section, we first analyse
the contracts Doubler2 and Etheramid1, before discussing the
general pattern.

Fig. 16 shows that Doubler2 was active for 6 months, with
most of the activity concentrated in the first month. We see a
correlation between the inflow and the outflow: each outflow
(red dot) is preceded by a sequence of inflows (blue dots) of
smaller amounts. This is because chain-shaped schemes gather
funds, and then pay back a single user in a single shot. Hence,
the red dots are higher in value, but less in number. The red
dots from 06–05 correspond to the contract owner withdrawing
the fees. Etheramid was active only for 1 month, with 5 days
of intense activity. Also in this case there is a strong correlation
between inflow and outflow transactions: however, the pattern is
different from Doubler2, since new investments (blue spots) are
immediately distributed among (some of) the users. This results

M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277 271

Fig. 16. Inflow (blue) and outflow (red) timing: on the x axis, the time of transactions (day-month); on the y axis, the amount of ether received/sent. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Lifetime of Ponzi schemes. On the x-axis, the number of contracts; on the y-axis, their lifetime measured in days.

in a set of red dots in decreasing value whenever there is a blue
dot.

The diagrams of the other contracts in our selection are in Ap-
pendix A, from which we still see the strong correlation between
inflow and outflow. The actual correlation depends on the cat-
egory of the Ponzi scheme: a tree-shaped one spreads each in-
vestment as soon as it receives them (e.g., Etheramid1), while a
chain-shaped scheme waits to have enough balance. Other minor
differences in the diagrams depend on contract peculiarities. For
instance, some contracts also implement a lottery, so that there
is a jackpot winner which results in an unexpected red dot (e.g.,
Government). Other contracts are designed so that the owners
can withdraw fees at their wish, and again in this case, the result
is red dots in a zone with no blue ones. In general, most contracts
have a very short lifespan, with a peak of intense activity followed
by almost no activity at all.

7.2. Lifetime

We now study the lifetime of the Ponzi schemes in our collec-
tion. Fig. 17 displays, in blue, the lifetime measured as the number
of days from the first to the last inflow or outflow transaction of
the contract. We see that ∼ 60% of Ponzi schemes have a lifetime
close to 0 days. Basically, this means that they were deployed on
the Ethereum blockchain, and in many cases advertised in forums
or dedicated web sites, but they did not manage to attract any
users.

Note that using the last transaction of a contract to measure
its actual period of activity may be too coarse. Indeed, our overall
diagrams show that Ponzi schemes are characterized by an high
number of transactions operated in a short time frame, followed
by a period of isolated transactions, and inactivity.

Fig. 18 shows how many Ponzi schemes have been created
over time. We see a peak in April 2016, with 91 new public
Ponzi schemes. After this first wave of creations, the situation has

settled, with an average of ∼ 3 new public schemes per month.
In Section 9 we discuss possible explanations for this fall in the
creation of Ponzi schemes, and in particular we conjecture that,
rather than disappearing, they are evolving into something more
difficult to classify.

7.3. Volume of payments

In this section we study how Ponzi schemes perform over
time. Fig. 19 shows the daily volume of payments (measured in
USD) of all the 184 Ponzi schemes in our collection. The x-axis
represents time, and the y-axis gives the volume of money trans-
ferred (measured in USD). The red dashed line represents money
sent by users to the schemes, while the blue solid line represents
money sent by the schemes to users. The diagram clearly reports
an equilibrium between outcoming and incoming flows, meaning
that most of the money invested in the schemes are redistributed
to users. However, the distribution of money follows the pattern
of inequality that characterizes Ponzi schemes, as highlighted
in Section 6, and further discussed later on in Section 8.

From Fig. 19 we observe that most value was exchanged in
the period from February to May 2016, with three peaks between
March and April 2016. It is plausible that the fall of activity after
April 2016 is a consequence of the analogous drop in the creation
of new Ponzi schemes, witnessed in Fig. 18.

We now measure the volume of transactions pointwise, on
a sample of the most representative schemes. Each diagram
in Fig. 20 shows the money flow (in and out) of a single contract:
the red dashed lines represent money sent to the scheme (mea-
sured in USD), while the blue solid lines represent payouts sent
by the scheme to users. The x-axis represents time: we consider
the total incoming/outgoing money per day.

In the diagram for DynamicPyramid, we see that the most
of the incoming flow happened on the 11st of March, the total

272 M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277

Fig. 18. Number of Ponzi schemes created by month.

Fig. 19. Daily volume of transactions (complete set of 184 Ponzi schemes).

investments in that day alone amount to almost 60 000USD.19
We see that the blue and red flows in that day almost overlap,
meaning that with such a great balance the contract was able to
pay out many users. However, after that single peculiar day, users
almost stopped sending ether, and so did the contract.

The diagram of Government is peculiar, due to a bug which
affected it (already discussed in Section 4.3). This contract needs
to periodically clear the array which records the list of users.
However, from a certain point performing this operation would
have required more gas than the maximum allowed for a single
transaction. Several attempts to clear the array and to redeem
the funds stored in the contract have failed with an ‘‘out-of-gas’’
exception. Exactly in the date of the first hard-fork (on the 17th
of June, 2016), which also raised the gas limit,20 we observe an
internal transaction of 22 699USD, used to withdraw the funds
and correctly clear the array.

The diagram for EthereumPyramid shows that the invest-
ments were made basically in two slots of time: one around the
last days of February 2016, and another on a single day, the 1st

19 Source: etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab
26c.
20 Source: blog.ethereum.org/2016/07/20/hard-fork-completed/.

of April. All those later investments were strangely made by the
owner: they were almost 50 in a single day. We see that the
inflow and outflow almost overlap. EthereumPyramid asks to all
users exactly 1ETH and triples the investment. With such a fixed
toll, one user every three is paid out, and the outflow is smooth.
However, we see that there is a peak in the outflow around the
26th of June, and in that day we observe a single payment of
90ETH . After inspecting the code and the set of transactions, we
are inclined to say that it is the owner withdrawing her fees.

From the diagram of Etheramid we see a perfect overlap
of inflow and outflow: indeed, this is a tree-shaped scheme,
so everything which goes in is immediately sent to the users’
ancestors. There is no need to delay payments waiting for the
payout to reach its quote, like in chain-shaped schemes (e.g., see
the diagram of Doubler2).

8. Measuring payment inequality

Our last analysis measures the inequality in the distribution
of investments and revenues for the schemes in our sample. To
this purpose we use Lorenz curves (Figs. 21 and 22) and Gini
coefficients (Fig. 23), two standard graphical representations of the
distribution of income or wealth.

http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
https://blog.ethereum.org/2016/07/20/hard-fork-completed/

M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277 273

Fig. 20. Volume of payments into and out Ponzi schemes, by time. On the x-axis, the dates of transactions; on the y-axis, the USD sent to (blue solid line) and from
(red dashed line) the contract.

The Lorenz curves represent users on the x-axis (in percent-
age), and on the y-axis the percentage of payments into (Fig. 21)
and from (Fig. 22) the Ponzi scheme. A diagonal line at 45 degrees
from the two extremes of the diagram (leftmost-bottommost to
rightmost-topmost) represents the perfect equality: i.e., for all
x ∈ [0, 100], the x% of the whole population of users has in-
vested/received the x% of the total income of the scheme. Instead,
the perfect disequality is represented by the (discontinuous) func-
tion that has value 0 for all x < 100, and value 100 for x = 100:
this means that a single user has invested/received the total sum
in the scheme.

We can observe in Fig. 21 that Etheramid1 is quite close
to perfect equality, while the most unbalanced schemes in our
sample are Government and ProtectTheCastle, where 10% of
victims have invested more than 90% of the money. The Lorenz
curves of these two schemes are quite close to the overall curve
of Bitcoin-only Ponzi schemes in [6]. Overall, the closer is a curve

to the one which represents perfect inequality, the more a Ponzi
scheme benefits from ‘‘big fishes’’ who invest large amounts of
money in the scheme; dually, if the curve is close to the one
which represents perfect equality, the scheme benefits from a
large population of victims who invest a small amount of money.

From Fig. 22 we observe that the distribution of payouts
is in general more iniquitous than that of investments, as the
Lorenz curves are more squeezed to the right, compared to those
in Fig. 21. Interestingly enough, although Etheramid1 is almost
perfectly balanced for investments, the distribution of payouts is
quite unbalanced.

The Gini coefficients in Fig. 23 relate the inequality of in-
vestments/payouts to the ‘‘success’’ of the scheme, defined as
total amount of money invested/received by users. The x-axis
represents the degree of inequality (0 indicates perfect equality,
while 100 is perfect inequality), and the y-axis measures the
total investment/payout. Each scheme is represented by an arrow,

274 M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277

Fig. 21. Lorenz curves of a sample of Ponzi schemes (payments in).

Fig. 22. Lorenz curves of a sample of Ponzi schemes (payments out).

whose tail represents investments, while the head represents
payouts. For the most lucrative scheme, DynamicPyramid, we
observe that the index of inequality is high, surpassing 80% for
both investments and payouts. For ProtectTheCastle, we see
that the head and the tail of the arrow almost overlap, meaning
that the inequality distributions of investments and payouts are
very close in this scheme. For the less lucrative schemes, no
correlation seems to exist between the success of the scheme and
the index of inequality.

9. Conclusions

Blockchains and smart contracts might really be the next ‘‘dis-
ruptive’’ technologies, as often reported by the media; however,
they can also offer new opportunities to tax-evaders, criminals,
and fraudsters, who can take advantage of their anonymity and
decentralization [25,26]. In this paper we have analysed Ponzi
schemes on Ethereum, the most widespread platform for smart
contracts so far. Overall, we have observed that, in the first 3 years
of life of Ethereum, there have been a multitude of experiments
to implement Ponzi schemes as smart contracts. Although the

economic impact of these experiments has been quite limited, as
they involve only a small fraction of the transactions and value
on the Ethereum blockchain, our analysis allows to draw some
relevant conclusions, which we summarize below in the form of
‘‘recommendations’’ for users and surveillance authorities.

Recommendation #1: check the advertisements. During our collec-
tion activity, we have studied how Ponzi schemes are promoted
on the web. In many cases, Ponzi schemes are presented as ‘‘high-
yield’’ investment programs, promising high returns and omitting
to declare any risks; in some other cases, they are promoted
as mere ‘‘social games’’, but a constant factor is that playing
involves transfers of money from the user to the contract, and
the allurement of making some profits. In many cases, we have
found discrepancies between the advertisement and the actual
chances of obtaining a payout: the latter is presented as a plain
fact, while in Section 4 we have shown that fallacies in the money
distribution mechanism or in its implementation might prevent
users from obtaining the expected payouts. Further, advertise-
ments usually omit to declare that the contract owner can modify
the advertised conditions, e.g. by increasing the owner fees, or
destructing the contract.21

So, our first recommendation for potential users is to carefully
study the advertisement: if the conditions appear too alluring,
probably it is a scam. Websites like BadBitcoin, which main-
tains a blacklist of cryptocurrency-based scams,22 or discussion
forums like the ‘‘Gambling: Investor-based games’’ section of
Bitcointalk.org23 should be consulted before sending money to a
contract. For surveillance authorities, our recommendation is to
monitor the web to detect suspect advertisements, and to provide
the community with official blacklists.

Recommendation #2: analyse the contract code. Despite one of
the main selling points of ‘‘smart’’ Ponzi schemes is that their
immutability and decentralized execution makes them ‘‘reliable’’,
our analysis in Section 4 has revealed several vulnerabilities,
which undermine their trustworthiness. Some of these vulner-
abilities are caused by poor programming skills, while some
others seem intentional: either should discourage users to join.
However, to transmit a feeling of security, contract owners shelter
themselves behind the motto that the code is publicly accessible,
assuming that everyone can read it and assess its reliability. Since
bugs are often missed even by their own creators, it is hard
to imagine that the average user can read a contract and fully
understand what it really does and what harms can be hidden
behind. Differently from the notorious vulnerabilities which af-
fected the DAO [27] and the Parity wallet [28,29], which caused
money losses in the order of hundreds of millions of dollars, the
vulnerabilities discussed here involve smaller contracts: indeed,
the vast majority of the contracts in our collection stays in less
than 100 lines of Solidity code (for comparison, the DAO was
∼1200 lines).

To counteract these vulnerabilities, researchers have started to
develop tools for automatically analysing Ethereum contracts [23,
30–33]. These tools manage to detect several common vulner-
abilities, even though the Turing-completeness of EVM and So-
lidity make verification unfeasible, in general. A parallel line
of research is the development of domain-specific languages for
smart contracts (possibly, not Turing-complete), which can help

21 For instance, the advertisement of EthStick only warns that ‘‘the settings
can be changed to adapt to the trends (but only within defined limits)’’. Actually,
from its source code we see that the fees can only be augmented, while the
payoff multiplier factor can be only decreased: everything to the sole advantage
of the owner.
22 https://badbitcoin.org/thebadlist/.
23 https://bitcointalk.org/index.php?board=207.0.

https://www.reddit.com/r/ethtrader/comments/4ds0a5/ethstick_a_satirical_yet_profitable_ponzi_game/
https://badbitcoin.org/thebadlist/
https://bitcointalk.org/index.php?board=207.0

M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277 275

Fig. 23. Gini coefficients of a sample of Ponzi schemes.

to improve the precision of analysis techniques, by reducing
the distance between contract specification and implementation.
Several domain-specific languages for smart contracts have been
proposed, not only targeted to the Ethereum platform. Among
them, FSolidM [34] models contracts as finite automata, which
can be translated into Solidity code; the works [35–37] develop
languages to specify financial contracts in the style of Peyton
Jones et al. [38].

Our recommendation for users is to apply these tools to verify,
at least, that the contract they want to join does not suffer from
vulnerabilities like those discussed in Section 4. While this alone
does not guarantee that the scheme is fair, it can guarantee
e.g. that the contract owner does not surreptitiously steal funds.
Domain-specific languages might allow for more sophisticated
analyses, which ideally could verify that the distribution of funds
among users is fair.24

Recommendation #3: analyse the transaction logs. Our analyses
in Sections 6–8 have shown that, despite the many peculiarities,
the transaction logs of Ponzi schemes seem to share some general
patterns: (i) only a few users have a ratio greater than 1: the
most numerous classes are those of users who never received
any money back, or have a ratio between 0 and 1; (ii) most Ponzi
schemes have a relatively short lifespan, consisting in a peak of
intense activity followed by a period of stagnation; (iii) the Gini
coefficients of the payouts of Ponzi schemes tend to be high (more
than 80% in our collection), meaning a strong inequality in the
distribution of money. Even though none of these features alone
seems enough to separate Ponzi schemes from other contracts,
these features can be used together to train classifiers which au-
tomatically detect Ponzi schemes. Along these lines, a preliminary
version of our dataset has been used in [21,40] to experiment
with learning strategies to classify Ethereum Ponzi schemes. The
classifier in [21,40] uses simple features of transaction logs (e.g.,
number of payments, contract balance, proportion of investors
who received at least one payment, etc..), as well as features of
the contracts EVM code (e.g., the number of occurrences of certain
opcodes). The measurements in [21,40] show that code features

24 For instance, BitML is an abstract language for Bitcoin contracts, which
supports the verification of fairness for gambling games, like multi-player
lotteries [39].

are more discriminating than transaction features — somehow
counter-intuitively, since EVM features do not seem to carry any
insight on the nature of the contract. However, this discrepancy
may be due to an over-simplification in the choice of transaction
features: using more sophisticated features, inspired to those
discussed in Sections 6 and 7, may help improve the precision
of the classification. The analysis techniques of Ponzi schemes in
Bitcoin [41,42] demonstrate that the automatic classification of
Ponzi schemes from the transaction history alone is feasible with
a high level of accuracy.

Future works. The Ponzi schemes we have presented in this paper
can be seen as the first wave of Ethereum-based scams. In a
preliminary version of this paper that we put online on March
10th, 2017,25 we had foreseen a second wave of scams:

‘‘very likely they will be less recognizable as such than the ones
collected in this survey. For instance, they could mix multi-level
marketing, token sales, and games, to realize complex smart
contracts, which would be very hard to correctly classify as Ponzi
schemes or legit investments’’

We believe that this expectation may have come true with
Initial Coin Offerings (ICOs), a means of crowdfunding based on
the trade of crypto-tokens, through which more than 3USD bil-
lions have been collected in 2017,26 as well as crypto-collectibles
games like CryptoKitties and its followers. The absence of specific
regulations in Europe and in the US, and the general difficulty
of governing decentralized cryptocurrencies, have made these
schemes attractive also for scammers: indeed, a few ICOs have
been unmasked as Ponzi schemes by financial authorities [43,44].
A relevant research line for future works could be that of studying
these kinds of ‘‘pseudo’’ Ponzi schemes, which share many sim-
ilarities with Ponzis, although failing to meet the requirements
we have specified in Section 3. Some features which apply well
to ‘‘pure’’ Ponzi schemes, like e.g. the gain ratio, seem appropriate
also to characterize these ‘‘pseudo’’ Ponzi.

25 arxiv.org/abs/1703.03779v1.
26 Source: www.coinschedule.com/stats.html.

https://arxiv.org/abs/1703.03779v1
https://www.coinschedule.com/stats.html

276 M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.future.2019.08.014.

References

[1] S. Nakamoto, Bitcoin: a Peer-To-Peer Electronic Cash System, 2008, https:
//bitcoin.org/bitcoin.pdf.

[2] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J.A. Kroll, E.W. Felten, Sok:
Research perspectives and challenges for Bitcoin and cryptocurrencies, in:
IEEE S & P, 2015, pp. 104–121, http://dx.doi.org/10.1109/SP.2015.14.

[3] T. Moore, The promise and perils of digital currencies, IJCIP 6 (3–4) (2013)
147–149, http://dx.doi.org/10.1016/j.ijcip.2013.08.002.

[4] M. Artzrouni, The mathematics of Ponzi schemes, Math. Social Sci. 58 (2)
(2009) 190–201, http://dx.doi.org/10.1016/j.mathsocsci.2009.05.003.

[5] T. Moore, J. Han, R. Clayton, The postmodern Ponzi scheme: Empirical
analysis of high-yield investment programs, in: Financial Cryptography
and Data Security, 2012, pp. 41–56, http://dx.doi.org/10.1007/978-3-642-
32946-3_4.

[6] M. Vasek, T. Moore, There’s no free lunch, even using Bitcoin: Tracking the
popularity and profits of virtual currency scams, in: Financial Cryptography
and Data Security, 2015, pp. 44–61, http://dx.doi.org/10.1007/978-3-662-
47854-7_4.

[7] N. Szabo, Formalizing and securing relationships on public networks,
First Monday 2 (9) (1997) https://firstmonday.org/ojs/index.php/fm/article/
view/548/.

[8] P.L. Seijas, S. Thompson, D. McAdams, Scripting smart contracts for dis-
tributed ledger technology, Cryptology ePrint Archive, Report 2016/1156,
http://eprint.iacr.org/2016/1156 (2016).

[9] E.V. Murphy, M.M. Murphy, M.V. Seitzinger, Bitcoin: Questions, Answers,
and Analysis of Legal Issues, Tech. Rep., Congressional Research Service,
2015.

[10] A. Juels, A.E. Kosba, E. Shi, The ring of gyges: Investigating the future of
criminal smart contracts, in: ACM CCS, 2016, pp. 283–295, http://dx.doi.
org/10.1145/2976749.2978362.

[11] V. Buterin, Ethereum: A Next Generation Smart Contract and Decentralized
Application Platform, 2013, https://github.com/ethereum/wiki/wiki/White-
Paper.

[12] G. Wood, Ethereum: A Secure Decentralised Generalised Transaction
Ledger, 2014, gavwood.com/paper.pdf.

[13] A. Gervais, G.O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, S. Capkun, On
the security and performance of proof of work blockchains, in: ACM CCS,
2016, pp. 3–16, http://dx.doi.org/10.1145/2976749.2978341.

[14] Solidity documentation, https://solidity.readthedocs.io/en/v0.5.4/ (2019).
[15] I. Kaminska, It’s not just a Ponzi, it’s a ‘‘smart’’ Ponzi, Financial

Times Alphaville https://ftalphaville.ft.com/2017/06/01/2189634/its-not-
just-a-ponzi-its-a-smart-ponzi/ (2017).

[16] M. William, ERC-20 Tokens, Explained, Cointelegraph, https:
//cointelegraph.com/explained/erc-20-tokens-explained (2018).

[17] S. Holoweiko, What is an ICO? Defining a Security on the Blockchain.
Available at SSRN: https://ssrn.com/abstract=3303447 (2018).

[18] J. Young, CryptoKitties Sales Hit $12 Million, Could be Ethereum’s Killer
App After All, https://cointelegraph.com/news/cryptokitties-sales-hit-12-
million-could-be-ethereums-killer-app-after-all (2017).

[19] M. Bartoletti, S. Lande, L. Pompianu, A. Bracciali, A general framework
for blockchain analytics, in: Proc. 1st Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers (SERIAL@Middleware), ACM, 2017,
pp. 7:1–7:6, http://dx.doi.org/10.1145/3152824.3152831.

[20] L. Yujian, L. Bo, A normalized levenshtein distance metric, IEEE Trans.
Pattern Anal. Mach. Intell. 29 (6) (2007) 1091–1095, http://dx.doi.org/10.
1109/TPAMI.2007.1078.

[21] W. Chen, Z. Zheng, E.C. Ngai, P. Zheng, Y. Zhou, Exploiting blockchain
data to detect smart Ponzi schemes on Ethereum, IEEE Access 7 (2019)
37575–37586, http://dx.doi.org/10.1109/ACCESS.2019.2905769.

[22] N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on Ethereum smart
contracts (SoK), in: Principles of Security and Trust (POST), in: LNCS, vol.
10204, Springer, 2017, pp. 164–186, http://dx.doi.org/10.1007/978-3-662-
54455-6_8.

[23] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart contracts
smarter, in: ACM CCS, 2016, http://eprint.iacr.org/2016/633.

[24] M. Vasek, M. Thornton, T. Moore, Empirical analysis of denial-of-service
attacks in the Bitcoin ecosystem, in: Financial Cryptography and Data
Security, 2014, pp. 57–71, http://dx.doi.org/10.1007/978-3-662-44774-1_5.

[25] J. Brito, A. Castillo, Bitcoin: A Primer for Policymakers, Mercatus Center at
George Mason University, 2013.

[26] T. Slattery, Taking a bit out of crime: Bitcoin and cross-border tax evasion,
Brook. J. Int’l L. 39 (2014) 829.

[27] Understanding the DAO attack, http://www.coindesk.com/understanding-
dao-hack-journalists/.

[28] Parity Wallet Security Alert, https://paritytech.io/blog/security-alert.html
(July 2017).

[29] A Postmortem on the Parity Multi-Sig Library Self-Destruct, https://goo.gl/
Kw3gXi (November 2017).

[30] I. Grishchenko, M. Maffei, C. Schneidewind, Foundations and tools for
the static analysis of Ethereum smart contracts, in: CAV, in: LNCS, vol.
10981, Springer, 2018, pp. 51–78, http://dx.doi.org/10.1007/978-3-319-
96145-3_4.

[31] Mythril, https://github.com/ConsenSys/mythril (2018).
[32] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko,

Y. Alexandrov, Smartcheck: Static analysis of Ethereum smart contracts,
in: IEEE/ACM International Workshop on Emerging Trends in Software
Engineering for Blockchain, 2018, pp. 9–16.

[33] P. Tsankov, A.M. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, M.T. Vechev,
Securify: Practical security analysis of smart contracts, in: ACM CCS, 2018,
pp. 67–82, http://dx.doi.org/10.1145/3243734.3243780.

[34] A. Mavridou, A. Laszka, Designing secure ethereum smart contracts: A
finite state machine based approach, in: Financial Cryptography and Data
Security, 2018.

[35] A. Biryukov, D. Khovratovich, S. Tikhomirov, Findel: Secure derivative
contracts for Ethereum, in: Financial Cryptography Workshops, in: LNCS,
vol. 10323, Springer, 2017, pp. 453–467, http://dx.doi.org/10.1007/978-3-
319-70278-0_28.

[36] B. Egelund-Müller, M. Elsman, F. Henglein, O. Ross, Automated execution
of financial contracts on blockchains, Bus. Inf. Syst. Eng. 59 (6) (2017)
457–467, http://dx.doi.org/10.1007/s12599-017-0507-z.

[37] P.L. Seijas, S.J. Thompson, Marlowe: Financial contracts on blockchain, in:
ISoLA, in: LNCS, vol. 11247, Springer, 2018, pp. 356–375, http://dx.doi.org/
10.1007/978-3-030-03427-6_27.

[38] S.L.P. Jones, J. Eber, J. Seward, Composing contracts: an adventure in
financial engineering, functional pearl, in: International Conference on
Functional Programming (ICFP), 2000, pp. 280–292, http://dx.doi.org/10.
1145/351240.351267.

[39] M. Bartoletti, R. Zunino, Verifying liquidity of Bitcoin contracts, in: Prin-
ciples of Security and Trust, in: LNCS, vol. 11426, Springer, 2019, pp.
222–247, http://dx.doi.org/10.1007/978-3-030-17138-4_10.

[40] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, Y. Zhou, Detecting Ponzi
schemes on Ethereum: Towards healthier blockchain technology, in:
WWW, 2018, pp. 1409–1418, http://dx.doi.org/10.1145/3178876.3186046.

[41] M. Bartoletti, B. Pes, S. Serusi, Data mining for detecting Bitcoin Ponzi
schemes, in: Crypto Valley Conference on Blockchain Technology, IEEE,
2018, pp. 75–84, http://dx.doi.org/10.1109/CVCBT.2018.00014.

[42] K. Toyoda, T. Ohtsuki, P.T. Mathiopoulos, Identification of high yield-
ing investment programs in bitcoin via transactions pattern analysis,
in: GLOBECOM, 2017, pp. 1–6, http://dx.doi.org/10.1109/GLOCOM.2017.
8254420.

[43] L. Shin, $15 Million ICO Halted By SEC For Being Alleged Scam,
2017, www.forbes.com/sites/laurashin/2017/12/04/15-million-ico-halted-
by-sec-for-being-alleged-scam.

[44] D.A. Zetzsche, R.P. Buckley, D.W. Arner, L. Föhr, The ICO Gold Rush: It’s
a scam, it’s a bubble, it’s a super challenge for regulators, University
of Luxembourg Law Working Paper No. 11/2017; UNSW Law Research
Paper No. 83; University of Hong Kong Faculty of Law Research Paper
No. 2017/035. Available at SSRN: https://ssrn.com/abstract=3072298 or
http://dx.doi.org/10.2139/ssrn.3072298 (2017).

Massimo Bartoletti is Associate Professor at the De-
partment of Mathematics and Computer Science of
the University of Cagliari. He got a Ph.D in Computer
Science at the University of Pisa in 2005. The re-
search activity of Massimo Bartoletti focuses on formal
methods for the specification, analysis and verifica-
tion of software and systems, on security, on impure
functional languages, on concurrency theory, on the
semantics of programming languages, on theories of
contracts, and on logics for the specification and ver-
ification of properties of software and systems. He is

coordinator of the node of the Cyber Security National Lab at the Department of
Mathematics and Computer Science of the University of Cagliari. Massimo Barto-
letti published over fifty research papers on refereed journals and international

https://doi.org/10.1016/j.future.2019.08.014
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1109/SP.2015.14
http://dx.doi.org/10.1016/j.ijcip.2013.08.002
http://dx.doi.org/10.1016/j.mathsocsci.2009.05.003
http://dx.doi.org/10.1007/978-3-642-32946-3_4
http://dx.doi.org/10.1007/978-3-642-32946-3_4
http://dx.doi.org/10.1007/978-3-642-32946-3_4
http://dx.doi.org/10.1007/978-3-662-47854-7_4
http://dx.doi.org/10.1007/978-3-662-47854-7_4
http://dx.doi.org/10.1007/978-3-662-47854-7_4
https://firstmonday.org/ojs/index.php/fm/article/view/548/
https://firstmonday.org/ojs/index.php/fm/article/view/548/
https://firstmonday.org/ojs/index.php/fm/article/view/548/
http://eprint.iacr.org/2016/1156
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb9
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb9
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb9
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb9
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb9
http://dx.doi.org/10.1145/2976749.2978362
http://dx.doi.org/10.1145/2976749.2978362
http://dx.doi.org/10.1145/2976749.2978362
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.gavwood.com/paper.pdf
http://dx.doi.org/10.1145/2976749.2978341
https://solidity.readthedocs.io/en/v0.5.4/
https://ftalphaville.ft.com/2017/06/01/2189634/its-not-just-a-ponzi-its-a-smart-ponzi/
https://ftalphaville.ft.com/2017/06/01/2189634/its-not-just-a-ponzi-its-a-smart-ponzi/
https://ftalphaville.ft.com/2017/06/01/2189634/its-not-just-a-ponzi-its-a-smart-ponzi/
https://cointelegraph.com/explained/erc-20-tokens-explained
https://cointelegraph.com/explained/erc-20-tokens-explained
https://cointelegraph.com/explained/erc-20-tokens-explained
https://ssrn.com/abstract=3303447
https://cointelegraph.com/news/cryptokitties-sales-hit-12-million-could-be-ethereums-killer-app-after-all
https://cointelegraph.com/news/cryptokitties-sales-hit-12-million-could-be-ethereums-killer-app-after-all
https://cointelegraph.com/news/cryptokitties-sales-hit-12-million-could-be-ethereums-killer-app-after-all
http://dx.doi.org/10.1145/3152824.3152831
http://dx.doi.org/10.1109/TPAMI.2007.1078
http://dx.doi.org/10.1109/TPAMI.2007.1078
http://dx.doi.org/10.1109/TPAMI.2007.1078
http://dx.doi.org/10.1109/ACCESS.2019.2905769
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://eprint.iacr.org/2016/633
http://dx.doi.org/10.1007/978-3-662-44774-1_5
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb25
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb25
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb25
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb26
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb26
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb26
http://www.coindesk.com/understanding-dao-hack-journalists/
http://www.coindesk.com/understanding-dao-hack-journalists/
http://www.coindesk.com/understanding-dao-hack-journalists/
https://paritytech.io/blog/security-alert.html
https://goo.gl/Kw3gXi
https://goo.gl/Kw3gXi
https://goo.gl/Kw3gXi
http://dx.doi.org/10.1007/978-3-319-96145-3_4
http://dx.doi.org/10.1007/978-3-319-96145-3_4
http://dx.doi.org/10.1007/978-3-319-96145-3_4
https://github.com/ConsenSys/mythril
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb32
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb32
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb32
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb32
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb32
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb32
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb32
http://dx.doi.org/10.1145/3243734.3243780
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb34
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb34
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb34
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb34
http://refhub.elsevier.com/S0167-739X(18)30140-7/sb34
http://dx.doi.org/10.1007/978-3-319-70278-0_28
http://dx.doi.org/10.1007/978-3-319-70278-0_28
http://dx.doi.org/10.1007/978-3-319-70278-0_28
http://dx.doi.org/10.1007/s12599-017-0507-z
http://dx.doi.org/10.1007/978-3-030-03427-6_27
http://dx.doi.org/10.1007/978-3-030-03427-6_27
http://dx.doi.org/10.1007/978-3-030-03427-6_27
http://dx.doi.org/10.1145/351240.351267
http://dx.doi.org/10.1145/351240.351267
http://dx.doi.org/10.1145/351240.351267
http://dx.doi.org/10.1007/978-3-030-17138-4_10
http://dx.doi.org/10.1145/3178876.3186046
http://dx.doi.org/10.1109/CVCBT.2018.00014
http://dx.doi.org/10.1109/GLOCOM.2017.8254420
http://dx.doi.org/10.1109/GLOCOM.2017.8254420
http://dx.doi.org/10.1109/GLOCOM.2017.8254420
http://www.forbes.com/sites/laurashin/2017/12/04/15-million-ico-halted-by-sec-for-being-alleged-scam
http://www.forbes.com/sites/laurashin/2017/12/04/15-million-ico-halted-by-sec-for-being-alleged-scam
http://www.forbes.com/sites/laurashin/2017/12/04/15-million-ico-halted-by-sec-for-being-alleged-scam
https://ssrn.com/abstract=3072298
http://dx.doi.org/10.2139/ssrn.3072298

M. Bartoletti, S. Carta, T. Cimoli et al. / Future Generation Computer Systems 102 (2020) 259–277 277

refereed conferences and workshops. He served as chair, program committee
member, and organizer for several international conferences and workshops,
and as external reviewer for several journals and international conferences.

Salvatore Carta graduated received a Ph.D in Elec-
tronics and Computer Science from the University of
Cagliari in 2003. In 2005 joined Department of Math-
ematics and Computer Science of the University of
Cagliari as Assistant Professor. In 2006 and 2007 he vis-
ited the Swiss Federal Institute of Technology as invited
Professor, hosted by Laboratoire des Systèmes Intégrés
- LSI. Since 2014 he is Associate Professor in Computer
Science at the University of Cagliari. The research activ-
ity of Salvatore Carta focuses on architectures, software
and tools for embedded and portable computing, with

particular emphasis on Software infrastructures, algorithms and applications
for multiprocessor-system-on-chip, low power real-time scheduling algorithms,
and Networks-on-Chip. Recently, he has focused on topics related to the social
Web, ubiquitous computing and computational societies. In particular he works
on algorithms for social search and recommendation, and on algorithms and
strategies in the fields of mobile Human Computer Interaction and Mobile
Health. Salvatore Carta is co-founder of the Trustworthy Computational Societies
Research Group at the Mathematics and Computer Science Department of the
University of Cagliari.

Tiziana Cimoli is a postdoc researcher at the De-
partment of Mathematics and Computer Science of
the University of Cagliari. Her research is focused on
contract-oriented interactions and their properties. In
early studies, she has worked on contracts modelled
with event structures, Petri nets and session types.
Recently, she has drifted her attention towards smart
contracts and blockchain technologies, with particular
interest in frauds and security vulnerabilities.

Roberto Saia is a postdoctoral researcher at the De-
partment of Mathematics and Computer Science of the
University of Cagliari. He got a Master Degree and a
Ph.D in Computer Science at the same University, and
his current research is focused on several domains,
such as those of the Recommender Systems, Data
Mining, Artificial Intelligence, and Security. He is the
author or co-author of tens scientific journals, articles,
and books.

	Dissecting Ponzi schemes on Ethereum: Identification, analysis, and impact
	Introduction
	Ethereum in a nutshell
	Collection of Ponzi schemes
	What is a ``smart'' Ponzi scheme?
	Collection of Ponzi schemes
	Extraction of transactions

	Anatomy of Ponzi schemes
	Taxonomy of Ponzi schemes
	Analysis of money redistribution
	Security issues

	Impact of Ponzi schemes
	Statistics by schemes kind

	Measuring gains and losses
	Evolution over time
	Inflow and outflow correlation
	Lifetime
	Volume of payments

	Measuring payment inequality
	Conclusions
	Declaration of competing interest
	Appendix A. Supplementary data
	References

