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Abstract. The request of effective credit scoring models is rising in these last
decades, due to the increase of consumer lending. Their objective is to divide the
loan applicants into two classes, reliable or unreliable, on the basis of the avail-
able information. The linear discriminant analysis is one of the most common
techniques used to define these models, although this simple parametric statisti-
cal method does not overcome some problems, the most important of which is
the imbalanced distribution of data by classes. It happens since the number of de-
fault cases is much smaller than that of non-default ones, a scenario that reduces
the effectiveness of the machine learning approaches, e.g., neural networks and
random forests. The Difference in Maximum Entropy (DME) approach proposed
in this paper leads toward two interesting results: on the one hand, it evaluates
the new loan applications in terms of maximum entropy difference between their
features and those of the non-default past cases, using for the model training only
these last cases, overcoming the imbalanced learning issue; on the other hand,
it operates proactively, overcoming the cold-start problem. Our model has been
evaluated by using two real-world datasets with an imbalanced distribution of
data, comparing its performance to that of the most performing state-of-the-art
approach: random forests.
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1 Introduction

The processes taken into account in this paper typically start with a loan application
(from now on named as instance) and end with a repayment (or not repayment) of the
loan. Although the retail lending represents one of the most profitable source of income
for the financial operators, the increase of loans is directly related to the increase of
the number of defaulted cases, i.e., fully or partially not repaid loans. In short, the
credit scoring is used to classify, on the basis of the available information, the loan
applicants into two classes, reliable or unreliable (or better, referring to their instances,
accepted or rejected). Considering its capability to reduce the losses of money, it is clear
that it represents an important tool, as stated in [1]. More formally, the credit scoring
techniques can be defined as a group of statistical methods used to infer the probability
that an instance leads toward a default [2,3].

Whereas that their processes involve all the factors that contribute to determine the
credit risk [4] (i.e., probability of loss from a debtor's default), they allow the financial
operators to evaluate this aspect. Other advantages related to these techniques are the
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reduction of the credit analysis cost, a quick response time in the credit decisions, and
the possibility to accurately monitor the credit activities [5]. The design of effective
approaches for credit scoring is not a simple task, due to a series of problems, the most
important of which is the imbalanced distribution of data [6] used to train the models
(small number of default cases, compared to the non-default ones), which reduces the
effectiveness of the machine learning strategies [7].

The idea behind this paper is to evaluate an instance in terms of its features' en-
tropy, and to define a metric able to determinate its level of reliability, on the basis of
this criterion. In more detail, we measure the difference, in terms of maximum Shannon
entropy (from now on referred simply as entropy), between the same instance features,
before and after we added to the set of non-default past instances an instance to eval-
uate. In the information theory, the entropy gives a measure of the uncertainty of a
random variable. The larger it is, the less a-priori information one has on the value of
it, then the entropy increases as the data becomes equally probable and decreases when
their chances are unbalanced. It should be observed that, when all data have the same
probability, we achieve the maximum uncertainty in the process of prediction of future
data.

On the basis of the previous considerations, we evaluate a new instance in terms of
uncertainty of its feature values: comparing the entropy of the set of non-default past
instances, before and after we added to it the instance to evaluate. A larger entropy will
indicate that the new instance contains similar data (increasing the level of equiprob-
ability), otherwise, it contains different data, thus it represents a potential default case
(in terms of non-similarity with the values of the non-default cases).

In our approach we choose to operate without take into account the default cases.
Such strategy presents a twofold advantage: first, we can operate proactively, i.e., with-
out the need to use default cases to train our model; second, we overcome the cold-start
problem related with the scarcity (or total absence) of default cases, considering that in
a real-world context they are much less than the non-default ones.

Given that in most of the cases reported in the literature [8,9,10] the Random Forests
approach outperforms the other ones in this context, we will compare the proposed
approach only to this one.

The main contributions of our work to the state of the art are listed below:

(i) calculation of the local maximum entropy by features (Λ), which gives us infor-
mation about the entropy achieved by each feature in the set of non-default cases
(it allows us to measure the differences between instances in terms of single fea-
tures);

(ii) calculation of the global maximum entropy (γ), which represents a meta-feature
based on the integral of the area under curve of the Λ values (it allows us to
measure the difference between instances in terms of all features);

(iii) formalization of the Difference in Maximum Entropy (DME) approach, used to
classify the unevaluated instances as accepted or rejected, by exploiting the Λ and
γ information;

(iv) evaluation of the DME approach on two real-world datasets, by comparing its
performance with those of a state-of-the-art approach such as Random Forest (in
our case, without using the past default cases to train the model).
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The remainder of the paper is organized as follows: Section 2 discusses the back-
ground and related work; Section 3 provides a formal notation and defines the problem
faced in this paper; Section 4 describes the implementation of the proposed approach;
Section 5 provides details on the experimental environment, the adopted datasets and
metrics, as well as on the used strategy and the experimental results; some concluding
remarks and future work are given in the last Section 6.

2 Background and Related Work

A large number of credit scoring classification techniques have been proposed in liter-
ature [11], as well as many studies aimed to compare their performance on the basis
of several datasets, such as in [8], where a large scale benchmark of 41 classification
methods has been performed across eight credit scoring datasets.

The problem of how to choose the best classification approach and how to tune
optimally its parameters was instead faced in [12]; in the same work are reported some
useful observations about the canonical metrics of performance used in this field [13].

2.1 Credit Scoring Models

Most of the statistical and data mining techniques at the state of the art can be used
in order to build credit scoring models [14,15], e.g., linear discriminant models [16],
logistic regression models [3], neural network models [17,18], genetic programming
models [19,20], k-nearest neighbor models [21], and decision tree models [22,23].

These techniques can also be combined in order to create hybrid approaches of
credit scoring, as that proposed in [24,25], based on a two-stage hybrid modeling pro-
cedure with artificial neural networks and multivariate adaptive regression splines, or
that presented in [26], based on neural networks and clustering methods.

2.2 Imbalanced Class Distribution

A complicating factor in the credit scoring process is the imbalanced class distribution
of data [27,7], caused by the fact that the default cases are much smaller than the non-
default ones. Such distribution of data reduces the performance of the classification
techniques, as reported in the study made in [9].

The misclassification costs during the processes of scorecard construction and those
of the classification were studied in [28], where it is also proposed to preprocess the
dataset of training through an over-sampling or a under-sampling of the classes. Its
effect on the performance has been deeply studied in [29,30].

2.3 Cold Start

The cold start problem [31,32] arises when there are not enough information to train a
reliable model about a domain [33,34,35].

In the credit scoring context, this happens when there are not many instances re-
lated to the credit-worthy and non-credit-worthy customers [36,37]. Considering that,
during the model definition, the proposed approach does not exploit the data about the
defaulting loans, it is able to reduce/overcome the aforementioned issue.
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2.4 Random Forests

Random Forests represent an ensemble learning method for classification and regres-
sion that is based on the construction of a number of randomized decision trees during
the training phase and it infers conclusions by averaging the results.

Since its formalization [38], it represents one of the most common techniques for
data analysis, thanks to its better performance w.r.t. the other state-of-the-art techniques.
This technique allows us to face a wide range of prediction problems, without perform-
ing any complex configuration, since it only requires the tuning of two parameters: the
number of trees and the number of attributes used to grow each tree.

2.5 Shannon Entropy

The Shannon entropy, formalized by Claude E. Shannon in [39], is one of the most
important metrics used in information theory. It reports the uncertainty associated with
a random variable, allowing us to evaluate the average minimum number of bits needed
to encode a string of symbols, based on their frequency.

More formally, given a set of values v ∈V , the entropy H(V ) is defined as shown in
the Equation 1, where P(v) is the probability that the element v is present in the set V .

H(V ) =−∑
v∈V

P(v)log2[P(v)] (1)

For instance, if we have a symbol set V = {v1,v2,v3,v4,v5} where the symbol oc-
currences in terms of frequency are v1 = 0.5,v2 = 0.2,v3 = 0.1,v4 = 0.1,v5 = 0.1, the
entropy H(V ) (i.e., the average minimum number of bits needed to represent a symbol)
is given by the Equation 2. Rounding up the result, we need 2 bits/per symbol. So, to
represent a sequence of five characters optimally, we need 10 bits.

H(V ) =−∑
v∈V

P(v)log2[P(v)] = 1.9 (2)

In the context of the classification methods, the use of entropy-based metrics is
typically restricted to the feature selection [40,41,42], the process where a subset of
relevant features (variables, predictors) is selected and used for the definition of the
classification model.

In this work, we instead use this metric to detect anomalous values in the features of
a new instance, where anomalous stands for values different from those in the history
of the non-default cases.

3 Notation and Problem Definition

This section introduces some notational conventions used in this paper and defines the
faced problem.
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3.1 Notation

Given a set of classified instances T = {t1, t2, . . . , tN}, and a set of features F = { f1, f2,
. . . , fM} that compose each t, we denote as T+ ⊆ T the subset of non-default instances,
and as T− ⊆ T the subset of default ones.

We also denote as T̂ = {t̂1, t̂2, . . . , t̂U} a set of unclassified instances and as E =
{e1,e2, . . . ,eU} these instances after the classification process, thus |T̂ |= |E|.

Each instance can belong only to one class c ∈C, where C = {accepted,re jected}.

3.2 Problem Definition

On the basis of the Λ and γ information (explained in Section 4.1), calculated before
and after we added to the set T+ the unclassified instances in the set T̂ (one by one), we
classify each instance t̂ ∈ T̂ as accepted or rejected.

Given a function eval(t̂,λ,γ) created to evaluate the correctness of the t̂ classifi-
cation made by exploiting the λ and γ information, which returns a boolean value σ

(0=misclassification, 1=correct classification), we formalize our objective as the maxi-
mization of the results sum, as shown in Equation 3.

max
0≤σ≤|T̂ |

σ =
|T̂ |
∑

u=1
eval(t̂u,λ,γ) (3)

4 Our Approach

The implementation of our approach is carried out through the following three steps:

1. Local Maximum Entropy by Features : calculation of the local maximum entropy
by features Λ, aimed to obtain information about the maximum level of entropy
assumed by each feature in the set T+;

2. Global Maximum Entropy : calculation of the global maximum entropy γ, a meta-
feature defined on the basis of the integral of the area under curve of the maximum
entropy by features Lambda;

3. Difference in Maximum Entropy : formalization of the Difference in Maximum
Entropy (DME) algorithm, able to classify a new instance as accepted or rejected,
on the basis of the Λ and γ information.

In the following, we provide a detailed description of each of these steps.

4.1 Local Maximum Entropy by Features

Denoting as H( f ) the entropy measured in the values assumed by a feature f ∈ F in the
set T+, we define the set Λ as shown in Equation 4. It contains the maximum entropy
achieved by each f ∈ F , so we have that |Λ|= |F |. We use this information during the
evaluation process explained in Section 4.3.

Λ = {λ1 = max(H( f1)),λ2 = max(H( f2)), . . . ,λM = max(H( fM))} (4)
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4.2 Global Maximum Entropy

We denote as global maximum entropy γ the integral of the area under curve of the
maximum entropy by features Λ (previously defined in Section 4.1), as shown in Fig. 1.
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Fig. 1: Global Maximum Entropy γ

More formally, the value of γ is calculated by using the trapezium rule, as shown in
Equation 5.

It is a meta-feature that gives us information about the maximum entropy achieved
by all features in T+, before and after we added to it a unevaluated instance. We use this
information during the evaluation process (Section 4.3), jointly with that given by Λ.

γ =

∫
λM

λ1
f (x)dx≈ ∆x

2

|Λ|
∑

k=1
( f (xk+1)+ f (xk)) with ∆x = (λM−λ1)

|Λ|
(5)

4.3 Difference in Maximum Entropy

The Difference in Maximum Entropy (DME) Algorithm 1 is aimed to evaluate and clas-
sify a set of unevaluated instances.

It takes as input a set T+ of non-default instances occurred in the past and a set
T̂ of unevaluated instances, returning as output a set E containing all instances in T̂ ,
classified as accepted or rejected on the basis of the Λ and γ information.

In step 2 we calculate the Λa value by using the non-default instances in T+, as
described in Section 4.1, while in step 3 we obtain the global maximum entropy γ

(Section 4.2). The steps from 4 to 26, process all the instances t̂ ∈ T̂ .
After the calculation of the Λb and γb values (steps 5 and 6), performed by adding

the current instance t̂ to the non-default instances set T+, in the steps from 7 to 13, we
compare each λa ∈ Λa with the corresponding feature λb ∈ Λb (steps from 8 to 12),
counting how many times the value of λb is greater than that of λa, increasing the value
of b (step 9) when this happens, or that of a otherwise (step 11); in the steps from 14
to 18 we perform the same operation, but by taking into account the global maximum
entropy γ.

At the end of the previous sub-processes, in the steps from 19 to 23 we classify the
current instance as accepted or rejected, on the basis of the a and b values, then we set
them to zero (steps 24 and 25). The resulting set E is returned at the end of the entire
process (step 27).
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Algorithm 1 Di f f erence in Maximum Entropy (DME)

Input: T+=Set of non-default instances, T̂ =Set of instances to evaluate
Output: E=Set of classified instances
1: procedure INSTANCESEVALUATION(T+,T̂ )
2: Λa=getLocalMaxEntropy(T+)
3: γa=getGlobalMaxEntropy(Λa)
4: for each t̂ in T̂ do
5: Λb=getLocalMaxEntropy(T+ + t̂)
6: γb=getGlobalMaxEntropy(Λb)
7: for each λ in Λ do
8: if λb > λa then
9: b++
10: else
11: a++
12: end if
13: end for
14: if γb > γa then
15: b++
16: else
17: a++
18: end if
19: if b > a then
20: E← (t̂,re jected)
21: else
22: E← (t̂,accepted)
23: end if
24: a = 0;
25: b = 0;
26: end for
27: return E
28: end procedure

5 Experiments

This section describes the experimental environment, the used datasets and metrics, the
adopted strategy, and the results of the performed experiments.

5.1 Experimental Setup

The proposed approach was developed in Java, while the implementation of the state-
of-the-art approach used to evaluate its performance was made in R1, using the random-
Forest and ROCR packages.

The experiments have been performed by using two real-world datasets character-
ized by a strong unbalanced distribution of data. For reasons of reproducibility of the
RF experiments, the R function set.seed() has been used in order to fix the seed of the
random number generator. The RF parameters have been tuned by searching those that
maximize the performance.

It should be further added that we verified the existence of a statistical difference
between the results, by using the independent-samples two-tailed Student's t-tests (p <
0.05).

1 https://www.r-project.org/
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5.2 DataSets

The two real-world datasets used in the experiments (i.e., Default of Credit Card Clients
dataset and German Credit datasets, both available at the UCI Repository of Machine
Learning Databases2) represent two benchmarks in this research field. In the following
we provide a short description of their characteristics:

Default of Credit Card Clients (DC). It contains 30,000 instances: 23,364 of them
are credit-worthy applicants (77.88%) and 6,636 are not credit-worthy (22.12%). Each
instance contains 23 attributes and a binary class variable (accepted or rejected).

German Credit (GC). It contains 1,000 instances: 700 of them are credit-worthy ap-
plicants (70.00%) and 300 are not credit-worthy (30.00%). Each instance contains 21
attributes and a binary class variable (accepted or rejected).

5.3 Metrics

This section presents the metrics used in the experiments.

Accuracy. The Accuracy metric reports the number of instances correctly classified,
compared to the total number of them. More formally, given a set of instances X to be
classified, it is calculated as shown in Equation 6, where |X | stands for the total number
of instances, and |X (+)| for the number of those correctly classified.

Accuracy(X) =
|X (+)|
|X |

(6)

F-measure. The F-measure is the weighted average of the precision and recall metrics.
It is a largely used metric in the statistical analysis of binary classification and gives us
a value in a range [0,1], where 0 represents the worst value and 1 the best one. More
formally, given two sets X and Y , where X denotes the set of performed classifications
of instances, and Y the set that contains the actual classifications of them, this metric is
defined as shown in Equation 7.

F-measure(X ,Y ) = 2 · (precision(X ,Y ) · recall(X ,Y ))
(precision(X ,Y )+ recall(X ,Y ))

with
precision(X ,Y ) =

|Y ∩X |
|X |

, recall(X ,Y ) =
|Y ∩X |
|Y |

(7)

2 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/statlog/



An Entropy Based Algorithm for Credit Scoring 9

AUC. The Area Under the Receiver Operating Characteristic curve (AUC) is a per-
formance measure used to evaluate the effectiveness of a classification model [43,44].
Its result is in a range [0,1], where 1 indicates the best performance. More formally,
according with the notation of Section 3, given the subset of non-default instances T+
and the subset of default ones T−, the formalization of the AUC metric is reported in the
Equation 8, where Θ indicates all possible comparisons between the instances of the
two subsets T+ and T−. It should be noted that the result is obtained by averaging over
these comparisons.

Θ(t+, t−) =


1, i f t+ > t−

0.5, i f t+ = t−

0, i f t+ < t−

AUC =
1

|T+| · |T−|

|T+|

∑
1

|T−|

∑
1

Θ(t+, t−) (8)

5.4 Strategy

The experiments have been performed by using the k-fold cross-validation criterion,
with k=10. Each dataset is randomly shuffled and then divided in k subsets; each k
subset is used as test set, while the other k-1 subsets are used as training set, considering
as result the average of all results. This approach allows us to reduce the impact of data
dependency and improves the reliability of the results.

5.5 Experimental Results

As shown in Fig. 2 and Fig. 3, the performance of our DME approach is very similar
to the RF one, both in terms of Accuracy and in terms of F-measure, where we achieve
better performance than RF with the DC dataset.
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Fig. 2: Accuracy Per f ormance

By examining the obtained results, the first observation that rises is related to the fact
that our approach gets the same performance of RF , despite it operates in a proactive
manner (i.e., without using default cases during the training process).



10 Saia and Carta

(GC) (DC)

0.20

0.40

0.60

0.80

1.00

Data-sets

F
-m

ea
su

re

RF DME

Fig. 3: F-measure Per f ormance

Another observation arises about the F-measure results, which show how the ef-
fectiveness of our approach increases with the number of non-default instances used in
the training process (DC dataset). This does not happen with RF , although it uses both
default and non-default instances, during the model training.

We can observe interesting results also in terms of AUC: this metric evaluates the
predictive capability of a classification model, and the results in Fig. 4 show that our
performance is similar to those of RF , although we did not train our model with both
classes of instances.

It should be noted that, as introduced in Section 1, the capability of the DME ap-
proach to operate proactively allows us to reduce/overcome the cold-start problem.
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Fig. 4: AUC Per f ormance

6 Conclusions and Future Work

The credit scoring techniques cover a crucial role in many financial contexts (i.e., per-
sonal loans, insurance policies, etc.), since they are used by financial operators in order
to evaluate the potential risks of lending, allowing them to reduce the losses due to
default.

This paper proposes a novel approach of credit scoring that exploits an entropy-
based criterion to classify a new instance as accepted or rejected.
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Considering that it does not need to be trained with the past default instances, it
is able to operate in a proactive manner, also reducing/overcoming the cold-start and
the data imbalance problems that reduce the effectiveness of the canonical machine
learning approaches.

The experimental results presented in Section 5.5 show two important aspects re-
lated to our approach: on the one hand, it performs similarly to one of the best per-
forming approaches in the state of the art (i.e., RF), by operating proactively; on the
other hand, it is able to outperform RF , when in the training process a large number of
non-default instances are involved, differently from RF , where the performance does
not improve further.

A possible follow up of this paper could be a new series of experiments aimed at im-
proving the non-proactive state-of-the-art approaches, by adding the information related
to the default cases, as well as the evaluation of the proposed approach in heterogeneous
scenarios, which involve different types of financial data, such as those generated by an
electronic commerce environment.
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